Skip to main content

Advertisement

Log in

Optimal pricing and greening decisions in a supply chain when considering market segmentation

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This study investigates the optimal pricing and the remanufactured product’s greening decisions in a supply chain consisting of one manufacturer and one retailer. Under manufacturer-led Stackelberg games, three remanufacturing systems, namely, centralized, decentralized manufacturer, and decentralized retailer-remanufacturing, are considered. Consumers in the market are divided into normal and green consumers according to whether they consider environmental issues. We first demonstrate the conditions under which the manufacturer or retailer should engage in remanufacturing. Second, despite cannibalization, a centralized remanufacturing system exhibits higher efficiency linked with higher market coverage and leads to a higher profit compared to manufacturer/retailer decentralized alternatives. Finally, numerical studies and sensitivity analyses are used to examine the sensitivity of optimal pricing and greening decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbey, J. D., Meloy, M. G., Guide, V. D. R., Jr., & Atalay, S. (2015). Remanufactured products in closed-loop supply chains for consumer goods. Production and Operations Management, 24(3), 488–503.

    Google Scholar 

  • Agi, M. A., & Yan, X. (2019). Greening products in a supply chain under market segmentation and different channel power structures. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2019.107523

  • Aras, N., Verter, V., & Boyaci, T. (2006). Coordination and priority decisions in hybrid manufacturing/remanufacturing systems. Production and Operations Management, 15(4), 528–543.

    Google Scholar 

  • Atasu, A., Guide, V. D. R., Jr., & Van Wassenhove, L. N. (2008). Product reuse economics in closed-loop supply chain research. Production and Operations Management, 17(5), 483–496.

    Google Scholar 

  • Atasu, A., Sarvary, M., & Van Wassenhove, L. N. (2008). Remanufacturing as a marketing strategy. Management Science, 54(10), 1731–1746.

    Google Scholar 

  • Banker, R. D., Khosla, I., & Sinha, K. K. (1998). Quality and competition. Management Science, 44(9), 1179–1192.

    Google Scholar 

  • Besanko, D., Dubé, J. P., & Gupta, S. (2005). Own-brand and cross-brand retail pass-through. Marketing Science, 24(1), 123–137.

    Google Scholar 

  • Chai, J., Qian, Z., Wang, F., & Zhu, J. (2021). Process innovation for green product in a closed loop supply chain with remanufacturing. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03888-y.

  • Chen, C. (2001). Design for the environment: A quality-based model for green product development. Management Science, 47(2), 250–263.

    Google Scholar 

  • Chitra, K. (2007). In search of the green consumers: A perceptual study. Journal of Services Research, 7(1), 173–191.

    Google Scholar 

  • Diallo, C., Venkatadri, U., Khatab, A., & Bhakthavatchalam, S. (2017). State of the art review of quality, reliability and maintenance issues in closed-loop supply chains with remanufacturing. International Journal of Production Research, 55(5), 1277–1296.

    Google Scholar 

  • Dominguez, R., Cannella, S., Ponte, B., & Framinan, J. M. (2020). On the dynamics of closed-loop supply chains under remanufacturing lead time variability. Omega, 97, 102106.

    Google Scholar 

  • Dominguez, R., Ponte, B., Cannella, S., & Framinan, J. M. (2019). On the dynamics of closed-loop supply chains with capacity constraints. Computers & Industrial Engineering, 128, 91–103.

    Google Scholar 

  • Du, S., Tang, W., Zhao, J., & Nie, T. (2018). Sell to whom? firm’s green production in competition facing market segmentation. Annals of Operations Research, 270(1–2), 125–154.

    Google Scholar 

  • Dubé, J. P., & Gupta, S. (2008). Cross-brand pass-through in supermarket pricing. Marketing Science, 27(3), 324–333.

    Google Scholar 

  • Fang, C., You, Z., Yang, Y., Chen, D., & Mukhopadhyay, S. (2020). Is third-party remanufacturing necessarily harmful to the original equipment manufacturer? Annals of Operations Research, 291, 317–338.

    Google Scholar 

  • Feng, L., Li, Y., & Fan, C. (2020). Optimization of pricing and quality choice with the coexistence of secondary market and trade-in program. Annals of Operations Research,https://doi.org/10.1007/s10479-020-03588-7.

  • Ferguson, M. E., & Souza, G. C. (2010). Closed-loop supply chains: New developments to improve the sustainability of business practices. Auerbach Publications, Taylor & Francis Group.

  • Ferrer, G., & Swaminathan, J. M. (2006). Managing new and remanufactured products. Management Science, 52(1), 15–26.

    Google Scholar 

  • Gaur, J., Amini, M., & Rao, A. K. (2017). Closed-loop supply chain configuration for new and reconditioned products: An integrated optimization model. Omega, 66, 212–223.

    Google Scholar 

  • Genc, T. S. (2021). Implementing the united nations sustainable development goals to supply chains with behavioral consumers. Annals of Operations Research,https://doi.org/10.1007/s10479-021-04037-9.

  • Ghosh, D., & Shah, J. (2015). Supply chain analysis under green sensitive consumer demand and cost sharing contract. International Journal of Production Economics, 164, 319–329.

    Google Scholar 

  • Ghosh, D., Shah, J., & Swami, S. (2020). Product greening and pricing strategies of firms under green sensitive consumer demand and environmental regulations. Annals of Operations Research, 290, 491–520.

    Google Scholar 

  • Giutini, R., & Gaudette, K. (2003). Remanufacturing: The next great opportunity for boosting US productivity. Business Horizons, 46(6), 41–48.

    Google Scholar 

  • Gromet, D. M., Kunreuther, H., & Larrick, R. P. (2013). Political ideology affects energy-efficiency attitudes and choices. Proceedings of the National Academy of Sciences, 110(23), 9314–9319.

    Google Scholar 

  • Guide, V. D. R., Jr., & Li, J. (2010). The potential for cannibalization of new products sales by remanufactured products. Decision Sciences, 41(3), 547–572.

    Google Scholar 

  • Guo, H., Zhang, Y., Zhang, C., Liu, Y., & Zhou, Y. (2020). Location-inventory decisions for closed-loop supply chain management in the presence of the secondary market. Annals of Operations Research, 291, 361–386.

    Google Scholar 

  • Han, X., Ying, S., & Bian, Y. (2020). Optimal recovery strategy of manufacturers: remanufacturing products or recycling materials? Annals of Operations Research, 290(1), 463–489.

    Google Scholar 

  • Guide, V. D. R., Jr., & Van Wassenhove, L. N. (2009). OR FORUM-The evolution of closed-loop supply chain research. Operations Research, 57(1), 10–18.

    Google Scholar 

  • Hong, Z., & Guo, X. (2019). Green product supply chain contracts considering environmental responsibilities. Omega, 83, 155–166.

    Google Scholar 

  • Hong, Z., Wang, H., & Gong, Y. (2019). Green product design considering functional-product reference. International Journal of Production Economics, 210, 155–168.

    Google Scholar 

  • Hong, Z., Wang, H., & Yu, Y. (2018). Green product pricing with non-green product reference. Transportation Research Part E: Logistics and Transportation Review, 115, 1–15.

    Google Scholar 

  • Hong, Z., Zhang, Y., Yu, Y., & Chu, C. (2020). Dynamic pricing for remanufacturing within socially environmental incentives. International Journal of Production Research, 58(13), 3976–3997.

    Google Scholar 

  • Liu, B., & Degiovanni, P. (2019). Green process innovation through industry 4.0 technologies and supply chain coordination. Annals of Operations Research, 2, 1–36.

    Google Scholar 

  • Liu, Z., Chen, J., & Diallo, C. (2018). Optimal production and pricing strategies for a remanufacturing firm. International Journal of Production Economics, 204, 290–315.

    Google Scholar 

  • Ma, Z. J., Zhang, N., Dai, Y., & Hu, S. (2016). Managing channel profits of different cooperative models in closed-loop supply chains. Omega, 59, 251–262.

    Google Scholar 

  • Ma, Z. J., Zhou, Q., Dai, Y., & Sheu, J. B. (2017). Optimal pricing decisions under the coexistence of “trade old for new” and “trade old for remanufactured” programs. Transportation Research Part E: Logistics and Transportation Review, 106, 337–352.

  • Miao, Z., Fu, K., Xia, Z., & Wang, Y. (2017). Models for closed-loop supply chain with trade-ins. Omega, 66, 308–326.

    Google Scholar 

  • Michaud, C., & Llerena, D. (2011). Green consumer behaviour: An experimental analysis of willingness to pay for remanufactured products. Business Strategy and the Environment, 20(6), 408–420.

    Google Scholar 

  • Mitra, S., & Webster, S. (2008). Competition in remanufacturing and the effects of government subsidies. International Journal of Production Economics, 111(2), 287–298.

    Google Scholar 

  • Mukherjee, K., & Mondal, S. (2009). Analysis of issues relating to remanufacturing technology—A case of an Indian company. Technology Analysis & Strategic Management, 21(5), 639–652.

    Google Scholar 

  • Niu, B., Zou, Z., Chen, L., & Ji, P. (2021). Start-up remanufacturing firms’ capacity investment: A two-period model. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04035-x

  • Qiang, Q., Ke, K., Anderson, T., & Dong, J. (2013). The closed-loop supply chain network with competition, distribution channel investment, and uncertainties. Omega, 41(2), 186–194.

    Google Scholar 

  • Reimann, M., Xiong, Y., & Zhou, Y. (2019). Managing a closed-loop supply chain with process innovation for remanufacturing. European Journal of Operational Research, 276(2), 510–518.

    Google Scholar 

  • Research, Markets, (2018). Global automotive parts remanufacturing market 2017–2025. Retrieved December 29, 2019, from https://markets.businessinsider.com/news/stocks/global-automotive-parts-remanufacturing-market-2017-2025-economic-benefits-expected-to-be-the-major-factor-for-the-33-billion-industry-1012472062

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Google Scholar 

  • Siddiqi, M. U., Ijomah, W. L., Dobie, G. I., Hafeez, M., Pierce, S. G., Ion, W., & MacLeod, C. N. (2019). Low cost three-dimensional virtual model construction for remanufacturing industry. Journal of Remanufacturing, 9(2), 129–139.

  • Souza, G. C. (2013). Closed-loop supply chains: A critical review, and future research. Decision Sciences, 44(1), 7–38.

    Google Scholar 

  • Wu, C. H. (2013). OEM product design in a price competition with remanufactured product. Omega, 41(2), 287–298.

    Google Scholar 

  • Wu, Z., & Pagell, M. (2011). Balancing priorities: Decision-making in sustainable supply chain management. Journal of Operations Management, 29(6), 577–590.

    Google Scholar 

  • Xiong, Y., Zhao, Q., & Zhou, Y. (2016). Manufacturer-remanufacturing vs supplier-remanufacturing in a closed-loop supply chain. International Journal of Production Economics, 176, 21–28.

    Google Scholar 

  • Xiong, Y., Zhou, Y., Li, G., Chan, H. K., & Xiong, Z. (2013). Don’t forget your supplier when remanufacturing. European Journal of Operational Research, 230(1), 15–25.

    Google Scholar 

  • Xu, X., He, P., Xu, H., & Zhang, Q. (2017). Supply chain coordination with green technology under cap-and-trade regulation. International Journal of Production Economics, 183, 433–442.

    Google Scholar 

  • Xu, L., Wang, C., & Zhao, J. (2018). Decision and coordination in the dual-channel supply chain considering cap-and-trade regulation. Journal of Cleaner Production, 197, 551–561.

    Google Scholar 

  • Yalabik, B., & Fairchild, R. J. (2011). Customer, regulatory, and competitive pressure as drivers of environmental innovation. International Journal of Production Economics, 131(2), 519–527.

    Google Scholar 

  • Yang, S. S., Ngiam, H. Y., Ong, S. K., & Nee, A. Y. C. (2015). The impact of automotive product remanufacturing on environmental performance. Procedia CIRP, 29, 774–779.

    Google Scholar 

  • Yi, P., Huang, M., Guo, L., & Shi, T. (2016). Dual recycling channel decision in retailer oriented closed-loop supply chain for construction machinery remanufacturing. Journal of Cleaner Production, 137, 1393–1405.

    Google Scholar 

  • Young, W., Hwang, K., McDonald, S., & Oates, C. J. (2010). Sustainable consumption: Green consumer behaviour when purchasing products. Sustainable Development, 18(1), 20–31.

    Google Scholar 

  • Zhang, W., & He, Y. (2019). Optimal policies for new and green remanufactured short-life-cycle products considering consumer behavior. Journal of Cleaner Production, 214, 483–505.

    Google Scholar 

  • Zhang, Y., He, Y., Yue, J., & Gou, Q. (2019). Pricing decisions for a supply chain with remanufactured products. International Journal of Production Research, 57(9), 2867–2900.

    Google Scholar 

  • Zhu, W., & He, Y. (2017). Green product design in supply chains under competition. European Journal of Operational Research, 258(1), 165–180.

    Google Scholar 

  • Zou, Z. B., Wang, J. J., Deng, G. S., & Chen, H. (2016). Third-party remanufacturing mode selection: Outsourcing or authorization? Transportation Research Part E: Logistics and Transportation Review, 87, 1–19.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2021QG067), National Natural Science Foundation of China (Grant No. 72071188), and China Scholarship Council (CSC), and Youth Foundation for Basic Scientific Research Program of Jiangnan University (1092050205222740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

When \(0\le p_R\le \delta p_N\), then:

$$\begin{aligned} \pi _{L}^C= & {} \left\{ (1-\gamma )\left( 1-\frac{p_N-p_R}{1-\delta }\right) +\gamma \left( 1-\frac{p_N-p_R+ke}{1-\delta }\right) \right\} (p_N-c_N)\\&+\left\{ (1-\gamma )\left( \frac{p_N-p_R}{1-\delta }-\frac{p_R}{\delta }\right) +\,\gamma \left( \frac{p_N-p_R+ke}{1-\delta }-\frac{p_R-ke}{\delta }\right) \right\} (p_R-c_R)-\beta e^2. \end{aligned}$$

The first order condition are \(\frac{\partial \pi _{L}^C}{\partial e}= \frac{-2(1-\delta )\beta \delta e-\gamma k[\delta (p_N-c_N)-(p_R-c_R)]}{(1-\delta )\delta }\)and \(\frac{\partial \pi _{L}^C}{\partial p_R}= \frac{-2p_R+\delta (2p_N-c_N) +c_R+\gamma k e}{(1-\delta )\delta }\). the second order derivatives can be written as:

$$\begin{aligned} \frac{\partial ^2 \pi _{L}^C}{\partial e^2}= & {} -2\beta<0,\\ \frac{\partial ^2 \pi _{L}^C}{\partial p_R^2}= & {} \frac{-2}{(1-\delta )\delta }<0,\\ \frac{\partial ^2 \pi _{L}^C}{\partial e\partial p_R}= & {} \frac{\gamma k}{(1-\delta )\delta }. \end{aligned}$$

The determinant of the Hessian can be written as: \(|H|=\frac{4(1-\delta )\beta \delta -\gamma ^2 k^2}{(1-\delta )^2\delta ^2}>0\). Thus, we have get the green rate e the price of remanufactured product which can maximize the manufacturer’s and the retailer’s profit by solving \(\frac{\partial \pi _{L}^C}{\partial e}=0\) and \(\frac{\partial \pi _{L}^C}{\partial p_R}=0\), that are, \(e=\frac{\gamma k(\delta c_N-\delta p_N+p_R-c_R)}{2(1-\delta )\beta \delta }\) and \(p_R=\delta p_N+\frac{c_R-c_N\delta +\gamma k e}{2}\).

Assuming \(\delta c_N>c_R\), \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma \le \min \left\{ \frac{\sqrt{2(1-\delta )\beta \delta }}{k},\frac{4(1-\delta )\beta \delta }{k^2}\right\} \) and substituting e into \(p_R\), we have \(p_R=\delta p_N-\frac{(\delta c_N-c_R)[2(1-\delta )\beta \delta )-\gamma ^2 k^2]}{4(1-\delta )\beta \delta -\gamma ^2 k^2}\). .

Solving the two equations together, we have

$$\begin{aligned} e=\frac{(\delta c_N-c_R)\gamma k}{4(1-\delta )\beta \delta -\gamma ^2k^2} \end{aligned}$$

and

$$\begin{aligned} p_R=\delta p_N-\frac{(\delta c_N-c_R)[2(1-\delta )\beta \delta )-\gamma ^2 k^2]}{4(1-\delta )\beta \delta -\gamma ^2 k^2}. \end{aligned}$$

Substituting e and \(p_R\) in to \(\pi _{M}\), then differentiating \(\pi _{L}^C\) with respect to \(p_N\), we have

$$\begin{aligned} \frac{\partial \pi _{L}^C}{\partial p_N}=1-2p_N+c_N \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{L}^C}{\partial p^2_N}=-2 \end{aligned}$$

As \(\frac{\partial ^2 \pi _{L}^C}{\partial p_N^2}<0\), we have \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{L}^C}{\partial p_N}=0\), that is,

$$\begin{aligned} p_{NL}^{C*}=\frac{1+c_N}{2}. \end{aligned}$$

Then when \(0\le p_R< \delta p_N\) and \(\frac{ 2(1-\delta )\beta \delta }{k^2}\le \gamma \le \frac{\sqrt{2(1-\delta )\beta \delta }}{k}\), substituting \(p_{NL}^{C*}\) in to e and \(p_R\), we have

$$\begin{aligned} e_{L}^{C*}= & {} \frac{(\delta c_N-c_R)\gamma k}{4(1-\delta )\beta \delta -\gamma ^2k^2},\\ p_{RL}^{C*}= & {} \frac{(1+c_N)\delta }{2}-\frac{[2(1-\delta )\beta \delta -\gamma ^2 k^2](\delta c_N-c_R)}{4(1-\delta )\beta \delta -\gamma ^2k^2} \end{aligned}$$

and

$$\begin{aligned} \pi _{L}^{C*}= \frac{(1-c_N)^2}{4}+\frac{(\delta c_N-c_R)^2\beta }{4(1-\delta )\beta \delta -\gamma ^2 k^2}. \end{aligned}$$

1.2 Proof of Proposition 2

Assume \(\delta p_N< p_R\le \delta p_N+ke\), then:

$$\begin{aligned} \pi _{M}^C= & {} \left\{ (1-\gamma )(1-p_N)+\gamma \left( 1-\frac{p_N-p_R+ke}{1-\delta }\right) \right\} (p_N-c_N)\\&+\left\{ \gamma \left( \frac{p_N-p_R+ke}{1-\delta }-\frac{p_R-ke}{\delta }\right) \right\} (p_R-c_R)-\beta e^2. \end{aligned}$$

With the same method in the case \(0\le p_R\le \delta p_N\), the determinant of the Hessian can be written as: \(|H|=\frac{\gamma [4(1-\delta )\beta \delta -\gamma k^2]}{(1-\delta )^2\delta ^2}>0\). Thus, we have get the greenness level e and the price of the remanufactured product by solving \(\frac{\partial \pi _{M}^C}{\partial e}=0\) and \(\frac{\partial \pi _{M}^C}{\partial p_{R}}=0\), that are, \(e=\frac{\gamma k(\delta c_N-\delta p_N+p_R-c_R)}{2(1-\delta )\beta \delta }\) and \(p_R=\delta p_N+\frac{c_R-c_N\delta + k e}{2}\).

As \(\delta c_N>c_R\), solving the two equations together, we have

$$\begin{aligned} e=\frac{(\delta c_N-c_R)\gamma k}{4(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

and

$$\begin{aligned} p_R=\delta p_N+\frac{[\gamma k^2-2(1-\delta )\beta \delta ](\delta c_N-c_R)}{4(1-\delta )\beta \delta -\gamma k^2}. \end{aligned}$$

Substituting e and \(p_R\) in to \(\pi _{M}^C\), then differentiating \(\pi _{M}^C\) with respect to \(p_N\), we have

$$\begin{aligned} \frac{\partial \pi _{M}^C}{\partial p_N}=1-2p_N+c_N \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{M}^C}{\partial p^2_N}=-2 \end{aligned}$$

As \(\frac{\partial ^2 \pi _{M}^C}{\partial p_N^2}<0\), we have \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{M}^C}{\partial p_N}=0\), that is,

$$\begin{aligned} p_{NM}^{C*}=\frac{1+c_N}{2}. \end{aligned}$$

Then substituting \(p_{NM}^C\) in to e and \(p_R\), we have

$$\begin{aligned} e_{M}^{C*}= & {} \frac{(\delta c_N-c_R)\gamma k}{4(1-\delta )\beta \delta -\gamma k^2},\\ p_{RM}^{C*}&==&\frac{(1+c_N)\delta }{2}+\frac{[\gamma k^2-2(1-\delta )\beta \delta ](\delta c_N-c_R)}{4(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

and

$$\begin{aligned} \pi _{M}^{C*}=\frac{(1-c_N)^2}{4}+\frac{\beta \gamma (\delta c_N-c_R)^2}{4(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

1.3 Proof of Proposition 3

Assume \(\delta p_N+ke<p_R\le p_N\), \(\pi _{H}^C=(1-p_N)(p_N-c_N)\), we can get \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{H}^C}{\partial p_N}=0\), that is,

$$\begin{aligned} p_{NH}^{C*}=\frac{1+c_N}{2} \end{aligned}$$

and

$$\begin{aligned} \pi _{H}^{C*}=\frac{(1-c_N)^2}{4} \end{aligned}$$

1.4 Proof of Proposition 4

By comparing the profits in the three price strategies, then we have

  1. (I)

    It is obvious that \(\pi _{H}^{C*}<\pi _{H}^{L*}\) and \(\pi _{H}^{C*}<\pi _{H}^{M*}\)

  2. (II)

    Then we compare \(\pi _{H}^{L*}\) and \(\pi _{H}^{L*}\)

\(\pi _{L}^{C*}-\pi _{M}^{C*}=\frac{\beta (1-\gamma )(\delta c_N-c_R)^2[4\beta \delta (1-\delta )-\gamma k^2-\gamma ^2 k^2]}{[4\beta \delta (1-\delta )-\gamma k^2][4\beta \delta (1-\delta )-\gamma ^2 k^2]}\). As \(\pi _{L}^{C*}-\pi _{M}^{C*}\) has same symbol with \(4\beta \delta (1-\delta )-\gamma k^2-\gamma ^2 k^2\) and \(4\beta \delta (1-\delta )-\gamma k^2-\gamma ^2 k^2\) is a concave function of \(\gamma \). By solving it equals to 0, we have \(\gamma =\frac{-\sqrt{16(1-\delta )\beta \delta +k^2}-k}{2k}\) or \(\gamma =\frac{\sqrt{16(1-\delta )\beta \delta +k^2}-k}{2k}\). As \(\gamma >0\) and denoting \(\gamma _1=\frac{\sqrt{16(1-\delta )\beta \delta +k^2}-k}{2k}\), it is easy to get \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma _1<\min \left\{ \frac{4(1-\delta )\beta \delta }{k^2}, ~\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right\} \). Thus we can conclude \(\pi _{L}^{C*}\ge \pi _{M}^{C*}\) when \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma \le \gamma _1\); \(\pi _{L}^{C*}<\pi _{M}^{C*}\) when \(\gamma _1<\gamma <\min \left\{ \frac{4(1-\delta )\beta \delta }{k^2}, ~\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right\} \).

1.5 Proof of Proposition 5

Assume that \(0\le p_R\le \delta p_N\) and \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma \le \min \left\{ \frac{\sqrt{2(1-\delta )\beta \delta }}{k},\frac{4(1-\delta )\beta \delta }{k^2}\right\} \), then:

$$\begin{aligned} \pi _{RL}^M= & {} \left\{ (1-\gamma )\left( 1-\frac{p_N-p_R}{1-\delta }\right) +\gamma \left( 1-\frac{p_N-p_R+ke}{1-\delta }\right) \right\} (p_N-w_N)\\&+\,\left\{ (1-\gamma )\left( \frac{p_N-p_R}{1-\delta }-\frac{p_R}{\delta }\right) +\gamma \left( \frac{p_N-p_R+ke}{1-\delta }-\frac{p_R-ke}{\delta }\right) \right\} (p_R-w_R). \end{aligned}$$

The first order condition are \(\frac{\partial \pi _{RL}^M}{\partial p_N}= \frac{-2(p_N-p_R)+1+w_N-w_R-\delta -\gamma k e}{1-\delta }\)and \(\frac{\partial \pi _{RL}^M}{\partial p_R}= \frac{-2p_R+\delta (2p_N-w_N) +w_R+\gamma k e}{(1-\delta )\delta }\). the second order derivatives can be written as:

$$\begin{aligned} \frac{\partial ^2 \pi _{RL}^M}{\partial p_N^2}= & {} \frac{-2}{1-\delta }<0,\\ \frac{\partial ^2 \pi _{RL}^M}{\partial p_R^2}= & {} \frac{-2}{(1-\delta )\delta }<0,\\ \frac{\partial ^2 \pi _{RL}^M}{\partial p_N\partial p_R}= & {} \frac{2}{1-\delta }. \end{aligned}$$

The determinant of the Hessian can be written as: \(|H|=\frac{4}{(1-\delta )\delta }>0\). Thus, we have get the price of new product and the remanufactured one which can maximize the manufacturer’s and the retailer’s profit by solving \(\frac{\partial \pi _{RL}^M}{\partial p_N}=0\) and \(\frac{\partial \pi _{RL}^M}{\partial p_R}=0\), that are, \(p_N=p_R+\frac{1+w_N-w_R-\delta -\gamma ke}{2}\) and \(p_R=\delta p_N+\frac{w_R-\delta w_N+\gamma k e}{2}\). Solving the two equations together, we have

$$\begin{aligned} p_R=\frac{\delta +w_R+\gamma ke}{2} \end{aligned}$$

and

$$\begin{aligned} p_N=\frac{1+w_N}{2}. \end{aligned}$$

Substituting \(p_R\) and \(p_N\) into \(\pi _{ML}^M\), and then differentiating \(\pi _{ML}^M\) with respect to \(w_R\) and e, we have

$$\begin{aligned}&\frac{\partial \pi _{ML}^M}{\partial w_R}=\frac{-2(w_R-\delta w_N)+c_R-\delta c_N+\gamma k e}{2(1-\delta )\delta }\\&\frac{\partial ^2 \pi _{ML}^M}{\partial w_R^2}=\frac{-1}{(1-\delta )\delta }\\&\frac{\partial ^2 \pi _{ML}^M}{\partial w_R\partial e}=\frac{\gamma k}{2(1-\delta )\delta }\\&\frac{\partial \pi _{ML}^M}{\partial e}=\frac{-4(1-\delta )\beta \delta e+(\delta c_N-\delta w_N+w_R-c_R)\gamma k}{2(1-\delta )\delta }\\&\frac{\partial ^2 \pi _{ML}^M}{\partial e^2}=-2\beta \end{aligned}$$

The determinant of the Hessian can be written as: \(|H|=\frac{8(1-\delta )\beta \delta -\gamma ^2 k^2}{4(1-\delta )^2\delta ^2}>0\). Thus, we can get the wholesale price and greenness rate of remanufactured product which can maximize the manufacturer’s and the retailer’s profit by solving \(\frac{\partial \pi _{ML}^M}{\partial w_R}=0\) and \(\frac{\partial \pi _{ML}^M}{\partial e}=0\), that are,

$$\begin{aligned} w_R=\delta w_N-\frac{(\delta c_N-c_R)[4(1-\delta )\beta \delta -\gamma ^2 k^2]}{8(1-\delta )\beta \delta -\gamma ^2 k^2} \end{aligned}$$

and

$$\begin{aligned} e=\frac{(\delta c_N-c_R)\gamma k}{8(1-\delta )\beta \delta -\gamma ^2 k^2}. \end{aligned}$$

Substituting \(w_R\) and e into \(\pi _{ML}^M\), and then differentiating \(\pi _{ML}^M\) with respect to \(w_N\), we have

$$\begin{aligned} \frac{\partial \pi _{ML}^M}{\partial w_N}=-w_N+\frac{1+c_N}{2} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{ML}^M}{\partial w_N^2}=-1. \end{aligned}$$

As \(\frac{\partial ^2 \pi _{ML}^M}{\partial w_N^2}<0\), by solving \(\frac{\partial \pi _{ML}^M}{\partial w_N}=0\), we get \(w_{NL}^{M*}=\frac{1+c_N}{2}\) which can maximize the manufacturer’s profit.

Substituting \(w_{NL}^{M*}\) into \(w_R\), e, \(p_N\),\(p_R\), \(\pi _R\) and \(\pi _M\), then

$$\begin{aligned} w_{RL}^{M*}= & {} \frac{\delta (1+c_N) }{2}-\frac{(\delta c_N-c_R)[4(1-\delta )\beta \delta -\gamma ^2 k^2]}{8(1-\delta )\beta \delta -\gamma ^2 k^2}\\ e_L^{M*}= & {} \frac{(\delta c_N-c_R)\gamma k}{8(1-\delta )\beta \delta -\gamma ^2 k^2} \\ p_{NL}^{M*}= & {} \frac{3+c_N}{4} \\ p_{RL}^{M*}&==&\frac{\delta (3+c_N)}{4}-\frac{[2(1-\delta )\beta \delta -\gamma ^2 k^2](\delta c_N-c_R)}{8(1-\delta )\beta \delta -\gamma ^2k^2} \\ \pi _{RL}^{M*}= & {} \frac{(1-c_N)^2}{16}+\frac{4(\delta c_N-c_R)^2(1-\delta )\beta ^2\delta }{[8(1-\delta )\beta \delta -\gamma ^2 k^2]^2}\\ \pi _{ML}^{M*}= & {} \frac{(1-c_N)^2}{8}+\frac{(\delta c_N-c_R)^2\beta }{8(1-\delta )\beta \delta -\gamma ^2 k^2} \end{aligned}$$

1.6 Proof of Proposition 6

Assume \(\delta p_N< p_R\le \delta p_N+ke\). Then:

$$\begin{aligned} \pi _{RM}^M= & {} \left\{ (1-\gamma )(1-p_N)+\gamma \left( 1-\frac{p_N-p_R+ke}{1-\delta }\right) \right\} (p_N-w_N)\\&+\,\left\{ \gamma \left( \frac{p_N-p_R+ke}{1-\delta }-\frac{p_R-ke}{\delta }\right) \right\} (p_R-w_R). \end{aligned}$$

With the same method in the case \(0\le p_R\le \delta p_N\), the determinant of the Hessian can be written as: \(|H|=\frac{4\gamma }{(1-\delta )\delta }>0\). With \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma <\frac{4(1-\delta )\beta \delta }{k^2}\le 1\), we have get the price of new and remanufactured product are, \(p_N=\frac{w_N}{2}+\frac{1-\delta -\gamma k e+\gamma (2p_R-w_R)}{2(1-\delta +\gamma \delta )}\) and \(p_R=\delta p_N+\frac{w_R-\delta w_N+ke}{2}\).

Solving the two equations together, we have

$$\begin{aligned} p_N=\frac{1+w_N}{2} \end{aligned}$$

and

$$\begin{aligned} p_R=\frac{\delta + w_R+ke}{2}. \end{aligned}$$

Substituting \(p_N\) and \(p_R\) in to \(\pi _{MM}^M\), then differentiating \(\pi _{MM}^M\) with respect to e and \(w_R\), we have

$$\begin{aligned} \frac{\partial \pi _{MM}^M}{\partial w_R}= & {} \frac{(-2 w_R+2\delta w_N-\delta c_N+c_R+ke)\gamma }{2(1-\delta )\delta }\\ \frac{\partial ^2 \pi _{MM}^M}{\partial w_R^2}= & {} \frac{-\gamma }{(1-\delta )\delta }\\ \frac{\partial ^2 \pi _{MM}^M}{\partial e \partial w_R}= & {} \frac{\gamma k}{2(1-\delta )\delta }\\ \frac{\partial \pi _{MM}^M}{\partial e}= & {} \frac{-4(1-\delta )\beta \delta e+(\delta c_N-\delta w_N+w_R-c_R)\gamma k}{2(1-\delta )\delta }\\ \frac{\partial ^2 \pi _{MM}^M}{\partial e^2}= & {} -2\beta \end{aligned}$$

The determinant of the Hessian can be written as: \(|H|=\frac{\gamma [8(1-\delta )\beta \delta -\gamma k^2]}{4(1-\delta )^2\delta ^2}>0\). Thus, we can get the wholesale price and greenness rate of remanufactured product which can maximize the manufacturer’s and the retailer’s profit by solving \(\frac{\partial \pi _{MM}^M}{\partial w_R}=0\) and \(\frac{\partial \pi _{MM}^M}{\partial e}=0\), that are,

$$\begin{aligned} w_R=\delta w_N+\frac{c_R-\delta c_N+ke}{2} \end{aligned}$$

and

$$\begin{aligned} e=\frac{(\delta c_N-\delta w_N+w_R-c_R)\gamma k}{4(1-\delta )\beta \delta }. \end{aligned}$$

solving the two equations together, we have

$$\begin{aligned} w_R=\delta w_N-\frac{(\delta c_N-c_R)[4(1-\delta )\beta \delta -\gamma k^2]}{8(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

Solving \(\frac{\partial \pi _{MM}^M}{\partial w_R}=0\) and \(\frac{\partial \pi _{MM}^M}{\partial e}=0\) together, we have

$$\begin{aligned} w_R=\delta w_N-\frac{(\delta c_N-c_R)[4(1-\delta )\beta \delta -\gamma k^2]}{8(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

and

$$\begin{aligned} e=\frac{(\delta c_N-c_R)\gamma k}{8(1-\delta )\beta \delta -\gamma k^2}. \end{aligned}$$

Substituting \(w_R\) and e into \(\pi _{MM}^M\), and then differentiating it with respect to \(w_N\), we have

$$\begin{aligned} \frac{\partial \pi _{MM}^M}{\partial w_N}=-w_N+\frac{1+c_N}{2} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{MM}^M}{\partial w_N^2}=-1. \end{aligned}$$

As \(\frac{\partial ^2 \pi _{MM}^M}{\partial w_N^2}<0\), by solving \(\frac{\partial \pi _{MM}^M}{\partial w_N}=0\), we get \(w_{NM}^{M*}=\frac{1+c_N}{2}\) which can maximize the manufacturer’s profit.

Substituting \(w_{NM}^{M*}\) into \(w_R\), e, \(p_N\),\(p_R\), \(\pi _R\) and \(\pi _M\), then

$$\begin{aligned} w_{RM}^{M*}= & {} \frac{\delta (1+c_N)}{2}-\frac{(\delta c_N-c_R)[4(1-\delta )\beta \delta -\gamma k^2]}{8(1-\delta )\beta \delta -\gamma k^2}\\ e_M^{M*}= & {} \frac{(\delta c_N-c_R)\gamma k}{8(1-\delta )\beta \delta -\gamma k^2}\\ p_{NM}^{M*}= & {} \frac{3+c_N}{4}\\ p_{RM}^{M*}= & {} \frac{\delta (3+c_N)}{4}+\frac{[\gamma k^2-2(1-\delta )\beta \delta ](\delta c_N-c_R)}{8(1-\delta )\beta \delta -\gamma k^2}\\ \pi _{RM}^{M*}= & {} \frac{(1-c_N)^2}{16}+\frac{4(1-\delta )(\delta c_N-c_R)^2\beta ^2\gamma \delta }{[8(1-\delta )\beta \delta -\gamma k^2]^2}\\ \pi _{MM}^{M*}= & {} \frac{(1-c_N)^2}{8}+\frac{(\delta c_N-c_R)^2\gamma \beta }{8(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

1.7 Proof of Proposition 7

Assume \(\delta p_N+ke<p_R\le p_N\), \(\pi _{RH}^M=(1-p_N)(p_N-w_N)\), we can get \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{RH}^M}{\partial p_N}=0\), that is,

$$\begin{aligned} p_{N}=\frac{1+w_N}{2} \end{aligned}$$

and

$$\begin{aligned} \pi _{RH}^{M}=\frac{(1-w_N)^2}{4} \end{aligned}$$

Substituting \(p_N\) into \(\pi _M\), we have

$$\begin{aligned} \pi _{MH}^M=\frac{(1-w_N)(w_N-c_N)}{2} \end{aligned}$$

By differentiating \(\pi _{MH}^M\) with respect to \(w_N\), we have

$$\begin{aligned} \frac{\partial \pi _{MH}^M}{\partial w_N}=-w_N+\frac{1+c_N}{2} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{MH}^M}{\partial w_N^2}=-1 \end{aligned}$$

As \(\frac{\partial ^2\pi _{MH}^M}{\partial w_N^2}<0\), by solving \(\frac{\partial \pi _{MH}^M}{\partial w_N}=0\), we have

$$\begin{aligned} w_{NH}^{M*}=\frac{1+c_N}{2} \end{aligned}$$

Substituting \(w_N\) into \(p_N\),\(\pi _{MH}^M\),\(\pi _{RH}^M\), we have

$$\begin{aligned} w_{NH}^{M*}= & {} \frac{3+c_N}{4}\\ \pi _{MH}^{M*}= & {} \frac{(1-c_N)^2}{8} \end{aligned}$$

and

$$\begin{aligned} \pi _{RH}^{M*}=\frac{(1-c_N)^2}{16}. \end{aligned}$$

1.8 Proof of Proposition 8

  1. (I)

    Comparing the manufacturer’s profits in three price strategies, we can see the case of the high pricing strategy leads to the smallest profit. Thus we compare other two strategies.

    $$\begin{aligned} \pi _{ML}^{M*}-\pi _{MM}^{M*}=\frac{(\delta c_N-c_R)^2(1-\gamma )\beta [-\gamma ^2k^2-\gamma k^2+8(1-\delta )\beta \delta ] }{[8(1-\delta )\beta \delta -\gamma k^2][8(1-\delta )\beta \delta -\gamma k^2]} \end{aligned}$$

    The symbol of \(\pi _{ML}^{M*}-\pi _{MM}^{M*}\) depends on \(-\gamma ^2k^2-\gamma k^2+8(1-\delta )\beta \delta \). Since \(-\gamma ^2k^2-\gamma k^2+8(1-\delta )\beta \delta \) is a concave and continue function of \(\gamma \) and \(\Delta =k^4+32(1-\delta )\beta \delta k^2>0\), by solving \(-\gamma ^2k^2-\gamma k^2+8(1-\delta )\beta \delta =0\), we have two roots \(\frac{-k-\sqrt{32(1-\delta )\beta \delta +k^2}}{2k}<0\) and \(\frac{-k+\sqrt{32(1-\delta )\beta \delta +k^2}}{2k}\). Denoting \({{\bar{\gamma }}}=\frac{-k+\sqrt{32(1-\delta )\beta \delta +k^2}}{2k}\), with \(0\le \delta \le 1\) and \(k^2\ge 4(1-\delta )\beta \delta \), it is easy to get \({{\bar{\gamma }}}>\frac{2(1-\delta )\beta \delta }{k^2}\). By comparing \({{\bar{\gamma }}}\) with \(\min \left\{ \frac{\sqrt{2(1-\delta )\beta \delta }}{k},\frac{4(1-\delta )\beta \delta }{k^2}\right\} \), we have (i) \(\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\le \frac{4(1-\delta )\beta \delta }{k^2}\) when \(2\sqrt{(1-\delta )\beta \delta }<k\le 2\sqrt{2(1-\delta )\beta \delta }\), then we get \({{\bar{\gamma }}}> \frac{\sqrt{2(1-\delta )\beta \delta }}{k}\); (ii) \(\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\ge \frac{4(1-\delta )\beta \delta }{k^2}\) when \(2\sqrt{2(1-\delta )\beta \delta }<k<1\), then we get \({{\bar{\gamma }}}>\frac{4(1-\delta )\beta \delta }{k^2}\). We can summarize \(\pi _{ML}^{M*}>\pi _{MM}^{M*}\).

  2. (II)

    Comparing the retailer’s and the manufacturer’s total profits in three price strategies, we can see the case of the high pricing strategy leads to the smallest profit. Thus we compare other two strategies.

$$\begin{aligned} \pi _{RL}^{M*}+\pi _{ML}^{M*}-(\pi _{RM}^{M*}+\pi _{MM}^{M*})=\frac{(\delta c_N-c_R)^2(1-\gamma )\beta F}{[8(1-\delta )\beta \delta -\gamma k^2]^2[8(1-\delta )\beta \delta -\gamma k^2]^2} \end{aligned}$$

where \(F=-\gamma ^5 k^6+k^4[12(1-\delta )\beta \delta -k^2]\gamma ^4+28(1-\delta )\beta \delta k^4\gamma ^3-12(1-\delta )\beta \delta k^2[16\beta \delta (1-\delta )-k^2]\gamma ^2-192(1-\delta )^2\beta ^2\delta ^2k^2\gamma +768(1-\delta )^3\beta ^3\delta ^3\).

Since \(\frac{2\beta \delta (1-\delta )}{k^2}<\gamma < \min \left\{ \frac{4\beta \delta (1-\delta )}{k^2},~~\frac{\sqrt{2\beta \delta (1-\delta )}}{k}\right\} \le 1\), we have \(\frac{(\delta c_N-c_R)^2(1-\gamma )\beta }{[8(1-\delta )\beta \delta -\gamma k^2]^2[8(1-\delta )\beta \delta -\gamma k^2]^2}>0\). Thus the symbol of \(\pi _{RL}^{M*}+\pi _{ML}^{M*}-(\pi _{RM}^{M*}+\pi _{MM}^{M*})\) is depend on F. In order to determine the symbol of F, by differentiating F with respect to \(\gamma \), we have

$$\begin{aligned} \frac{\partial F}{\partial \gamma }= & {} -5\gamma ^4 k^6+4k^4[12(1-\delta )\beta \delta -k^2]\gamma ^3+84(1-\delta )\beta \delta k^4\gamma ^2\\&-24(1-\delta )\beta \delta k^2[16\beta \delta (1-\delta )-k^2]\gamma -192(1-\delta )^2\beta ^2\delta ^2k^2\\ \frac{\partial ^2 F}{\partial \gamma ^2}= & {} 4\{-(5\gamma +3)k^4\gamma ^2+6(1-\delta )\beta \delta k^2(1+7\gamma +6\gamma ^2)-96(1-\delta )^2\beta ^2\delta ^2\}k^2\\ \frac{\partial ^3 F}{\partial \gamma ^3}= & {} 12\{14(1-\delta )\beta \delta +24(1-\delta )\beta \delta \gamma -(5\gamma +2)\gamma k^2\}k^4 \\ \frac{\partial ^4 F}{\partial \gamma ^4}= & {} 24\{12(1-\delta )\beta \delta -(5\gamma +1)k^2\}k^4 \\ \frac{\partial ^5 F}{\partial \gamma ^5}= & {} -120k^6 \end{aligned}$$

Since F is continuous when \(\frac{2\beta \delta (1-\delta )}{k^2}< \gamma < \min \left\{ \frac{4\beta \delta (1-\delta )}{k^2},~~\frac{\sqrt{2\beta \delta (1-\delta )}}{k}\right\} \le 1\), \(\frac{\partial ^5 F}{\partial \gamma ^5}<0\) and \(k\ge 0\), we can get \(\frac{\partial ^4 F}{\partial \gamma ^4}\) is decreasing in \(\gamma \). In addition, when \(\gamma \le \frac{12(1-\delta )\beta \delta -k^2}{5k^2}\), i.e., \(\frac{\partial ^4 F}{\partial \gamma ^4}\ge 0\), \(\frac{\partial ^3 F}{\partial \gamma ^3}\) is increasing in \(\gamma \); when \(\frac{12(1-\delta )\beta \delta -k^2}{5k^2}<\gamma \), \(\frac{\partial ^3 F}{\partial \gamma ^3}\) is decreasing in \(\gamma \). As \(\frac{12(1-\delta )\beta \delta -k^2}{5k^2}<\frac{2\beta \delta (1-\delta )}{k^2}\), \(\frac{\partial ^4 F}{\partial \gamma ^4}<0\) then \(\frac{\partial ^3 F}{\partial \gamma ^3}\) is decreasing in \(\gamma \).

Furthermore, \(\frac{\partial ^3 F}{\partial \gamma ^3}|_{{\gamma =\frac{2\beta \delta (1-\delta )}{k^2}}^+}=24\beta \delta (1-\delta )k^2[14\beta \delta (1-\delta )+5k^2]>0\) and \(\frac{\partial ^3 F}{\partial \gamma ^3}|_{{\gamma =\frac{4\beta \delta (1-\delta )}{k^2}}^-}=24\beta \delta (1-\delta )k^2[8\beta \delta (1-\delta )+3k^2]>0\). We can conclude that \(\frac{\partial ^2 F}{\partial \gamma ^2}\) is increasing in \(\gamma \). And we have \(\frac{\partial ^2 F}{\partial \gamma ^2}|_{{\gamma =\frac{2\beta \delta (1-\delta )}{k^2}}^+}=8(1-\delta )\beta \delta \{52(1-\delta )^2\beta ^2\delta ^2-12(1-\delta )\beta \delta k^2+3k^4\}>0\), \(\frac{\partial ^2 F}{\partial \gamma ^2}|_{{\gamma =\frac{4\beta \delta (1-\delta )}{k^2}}^-}=8(1-\delta )\beta \delta \{128\beta ^2\delta ^2(1-\delta )^2+12\beta \delta (1-\delta )k^2+3k^4\}>0\). Thus \(\frac{\partial F}{\partial \gamma }\) is increasing in \(\gamma \).

With \(\frac{2\beta \delta (1-\delta )}{k^2}< \gamma < \min \left\{ \frac{4\beta \delta (1-\delta )}{k^2},~~\frac{\sqrt{2\beta \delta (1-\delta )}}{k}\right\} \le 1\), we have

$$\begin{aligned} \frac{\partial F}{\partial \gamma }|_{{\gamma =\frac{2\beta \delta (1-\delta )}{k^2}}^+}=\frac{16\beta ^2\delta ^2(1-\delta )^2\{-9k^4+\beta \delta (1-\delta )[56\beta \delta (1-\delta )-29k^2]\}}{k^2}<0, \end{aligned}$$
(A.1)

and

$$\begin{aligned} \frac{\partial F}{\partial \gamma }|_{{\gamma =\frac{4\beta \delta (1-\delta )}{k^2}}^-}=\frac{32\beta ^2\delta ^2(1-\delta )^2\{-3k^4+\beta \delta (1-\delta )[56\beta \delta (1-\delta )-14k^2]\}}{k^2}<0, \end{aligned}$$
(A.2)

we can conclude that F is decreasing in \(\gamma \in \left( \frac{2\beta \delta (1-\delta )}{k^2},\min \left\{ \frac{4\beta \delta (1-\delta )}{k^2},~~\frac{\sqrt{2\beta \delta (1-\delta )}}{k}\right\} \right) \).

  1. (i)

    when \(k\ge 2\sqrt{2\beta \delta (1-\delta )}\), we have \(\frac{4\beta \delta (1-\delta )}{k^2}\le \frac{\sqrt{2\beta \delta (1-\delta )}}{k}\);

    Moreover, we have \(F|_{{\gamma =\frac{2\beta \delta (1-\delta )}{k^2}}^+}=\frac{16(1-\delta )^3\beta ^2\delta ^3\{27k^4-35(1-\delta )\beta \delta k^2+10(1-\delta )^2\beta ^2\delta ^2\}}{k^4}>0\) and \(F|_{{\gamma =\frac{4\beta \delta (1-\delta )}{k^2}}^-}=\frac{64\beta ^3\delta ^3(1-\delta )^3\{3k^4-24\beta \delta (1-\delta )k^2+32(1-\delta )^2\beta ^2\delta ^2\}}{k^4}\). Since \(k^2>8\beta \delta (1-\delta )\), \(F|_{{\gamma =\frac{4\beta \delta (1-\delta )}{k^2}}^-}>0\) which implying F is always positive. The symbol of \(\pi _{RL}^{M*}+\pi _{ML}^{M*}-(\pi _{RM}^{M*}+\pi _{MM}^{M*})\) is the same as F, then the proposition is approved.

  2. (ii)

    when \(4\beta \delta (1-\delta )\le k<2\sqrt{2\beta \delta (1-\delta )}\), we have \(\frac{4\beta \delta (1-\delta )}{k^2}>\frac{\sqrt{2\beta \delta (1-\delta )}}{k}\);

Similarly, we have \(F|_{{\gamma =\frac{2\beta \delta (1-\delta )}{k^2}}^+}>0\) and \(F|_{{\gamma =\frac{\sqrt{2\beta \delta (1-\delta )}}{k}}^-}>0\) which implying F is always positive. The symbol of \(\pi _{RL}^{M*}+\pi _{ML}^{M*}-(\pi _{RM}^{M*}+\pi _{MM}^{M*})\) is the same as F, then the proposition is approved.

1.9 Proof of Proposition 9

Assume that \(0\le p_R\le \delta p_N\) and \(\frac{ 2(1-\delta )\beta \delta }{k^2}<\gamma <\frac{ 4(1-\delta )\beta \delta }{k^2}\le 1\). Then:

$$\begin{aligned} \pi _{RL}^R= & {} \left\{ (1-\gamma )\left( 1-\frac{p_N-p_R}{1-\delta }\right) +\gamma \left( 1-\frac{p_N-p_R+ke}{1-\delta }\right) \right\} (p_N-w_N)\\&+\left\{ (1-\gamma )\left( \frac{p_N-p_R}{1-\delta }-\frac{p_R}{\delta }\right) +\gamma \left( \frac{p_N-p_R+ke}{1-\delta }-\frac{p_R-ke}{\delta }\right) \right\} (p_R-c_R)-\beta e^2. \end{aligned}$$

The first order condition are \(\frac{\partial \pi _{RL}^R}{\partial e}= \frac{-2(1-\delta )\beta \delta e-\gamma k[\delta (p_N-w_N)-(p_R-c_R)]}{(1-\delta )\delta }\)and \(\frac{\partial \pi _{RL}^R}{\partial p_R}= \frac{-2p_R+\delta (2p_N-w_N) +c_R+\gamma k e}{(1-\delta )\delta }\). the second order derivatives can be written as:

$$\begin{aligned} \frac{\partial ^2 \pi _{RL}^R}{\partial e^2}= & {} -2\beta<0,\\ \frac{\partial ^2 \pi _{RL}^R}{\partial p_R^2}= & {} \frac{-2}{(1-\delta )\delta }<0,\\ \frac{\partial ^2 \pi _{RL}^R}{\partial e\partial p_R}= & {} \frac{\gamma k}{(1-\delta )\delta }. \end{aligned}$$

The determinant of the Hessian can be written as: \(|H|=\frac{4(1-\delta )\beta \delta -\gamma ^2 k^2}{(1-\delta )^2\delta ^2}>0\). Thus, we have get the green rate e the price of remanufactured product which can maximize the manufacturer’s and the retailer’s profit by solving \(\frac{\partial \pi _{RL}^R}{\partial e}=0\) and \(\frac{\partial \pi _{RL}^R}{\partial p_R}=0\), that are, \(e=\frac{\gamma k(\delta w_N-\delta p_N+p_R-c_R)}{2(1-\delta )\beta \delta }\) and \(p_{R}=\delta p_N+\frac{c_R-w_N\delta +\gamma k e}{2}\).

As \(\delta w_N>c_R\) and \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma \le \min \left\{ \frac{\sqrt{2(1-\delta )\beta \delta }}{k},\frac{4(1-\delta )\beta \delta }{k^2}\right\} \) by solving two equations together, we have

$$\begin{aligned} e=\frac{(\delta w_N-c_R)\gamma k}{4(1-\delta )\beta \delta -\gamma ^2k^2} \end{aligned}$$

and

$$\begin{aligned} p_R=\delta p_N-\frac{[2(1-\delta )\beta \delta -\gamma ^2 k^2](\delta w_N-c_R)}{4(1-\delta )\beta \delta -\gamma ^2k^2}. \end{aligned}$$

By substituting e and \(p_R\) in to \(\pi _{RL}^R\), then differentiating \(\pi _{RL}^R\) with respect to \(p_N\), we have

$$\begin{aligned} \frac{\partial \pi _{RL}^R}{\partial p_N}=1-2p_N+w_N \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{RL}^R}{\partial p^2_N}=-2 \end{aligned}$$

As \(\frac{\partial ^2 \pi _{RL}^R}{\partial p_N^2}<0\), we have \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{RL}^R}{\partial p_N}=0\), that is,

$$\begin{aligned} p_N=\frac{1+w_N}{2}. \end{aligned}$$

Substituting \(p_N\), e and \(p_R\) into \(\pi _{ML}^R\), and differentiating \(\pi _{ML}^R\), we have \(\frac{\partial \pi _{ML}^R}{\partial w_N}= \frac{1}{2}-\frac{(4\beta \delta -\gamma ^2 k^2)(2w_N-c_N)+4\beta \delta c_R}{2[4(1-\delta )\beta \delta -\gamma ^2 k^2]}\) and \(\frac{\partial ^2\pi _{ML}^R}{\partial w_N^2}= -\frac{4\beta \delta -\gamma ^2 k^2}{4(1-\delta )\beta \delta -\gamma ^2 k^2}<0\). By solving \(\pi _{ML}^R=0\), we have \(w_{NL}^{R*}= \frac{1+c_N}{2}-\frac{2\beta \delta (\delta -c_R)}{4\beta \delta -\gamma ^2 k^2}\).

Then we have

$$\begin{aligned} e_{L}^{R*}= & {} \frac{\gamma k(\delta -c_R)}{2(4\beta \delta -\gamma ^2k^2)}\\&+\frac{\gamma k(\delta c_N-c_R)}{2[4\beta \delta (1-\delta )-\gamma ^2k^2]}\\ p_{RL}^{R*}= & {} \frac{\delta (3+c_N)}{4}-\frac{(2\beta \delta -\gamma ^2k^2)(\delta -c_R)}{2(4\beta \delta -\gamma ^2k^2)}\\&-\frac{[2\beta \delta (1-\delta )-\gamma ^2k^2](\delta c_N-c_R)}{2[4\beta \delta (1-\delta )-\gamma ^2k^2]}\\ p_{RL}^{R*}= & {} \frac{\delta (1-c_N)+4c_R}{4}+\frac{(\delta -c_R)\beta \delta }{4\beta \delta -\gamma ^2k^2}\\&+\frac{(1-\delta )(\delta c_N-c_R)\beta \delta }{4\beta \delta (1-\delta )-\gamma ^2k^2}\\ p_{NL}^{R*}= & {} \frac{3+c_N}{4}-\frac{\beta \delta (\delta -c_R)}{4\beta \delta -\gamma ^2k^2}\\ \pi _{ML}^{R*}= & {} \frac{\{4(1-\delta +c_R-c_N)\beta \delta -\gamma ^2 k^2(1-c_N)\}^2}{8(4\beta \delta -\gamma ^2 k^2)[4(1-\delta )\beta \delta -\gamma ^2 k^2]} \end{aligned}$$

and

$$\begin{aligned} \pi _{RL}^{R*}= & {} \frac{(4\beta \delta {-}\gamma ^2k^2)^2(1{-}c_N)^2+8\beta (\delta {-}c_R)\{(4\beta \delta {-}\gamma ^2 k^2)[(1+c_N)\delta {-}2c_R]-6\beta \delta ^2(\delta {-}c_R)\}}{16[4(1{-}\delta )\beta \delta {-}\gamma ^2 k^2](4\beta \delta {-}\gamma ^2 k^2)}. \end{aligned}$$

1.10 Proof of Proposition 10

Assume \(\delta p_N< p_R\le \delta p_N+ke\). Then:

$$\begin{aligned} \pi _{RM}^R= & {} \left\{ (1-\gamma )(1-p_N)+\gamma \left( 1-\frac{p_N-p_R+ke}{1-\delta }\right) \right\} (p_N-w_N)\\&+\left\{ \gamma \left( \frac{p_N-p_R+ke}{1-\delta }-\frac{p_R-ke}{\delta }\right) \right\} (p_R-c_R)-\beta e^2. \end{aligned}$$

With the same method in the case \(0\le p_R\le \delta p_N\), the determinant of the Hessian can be written as: \(|H|=\frac{\gamma \{4(1-\delta )\beta \delta -\gamma k^2\}}{(1-\delta )^2\delta ^2}>0\). Thus, we have get the green rate e the price of remanufactured product which can maximize the manufacturer’s and the retailer’s profit by solving \(\frac{\partial \pi _{RM}^R}{\partial e}=0\) and \(\frac{\partial \pi _{RM}^R}{\partial p_R}=0\), that are, \(e=\frac{\gamma k(\delta w_N-\delta p_N+p_R-c_R)}{2(1-\delta )\beta \delta }\) and \(p_R=\delta p_N+\frac{c_R-\delta w_N+ k e}{2}\). Solving the two equations together, we have

$$\begin{aligned} e=\frac{\gamma k(\delta w_N-c_R)}{4(1-\delta )\beta \delta -\gamma k^2} \end{aligned}$$

and

$$\begin{aligned} p_R=\delta p_N+\frac{(\delta w_N-c_R)[\gamma k^2-2(1-\delta )\beta \delta ]}{4(1-\delta )\beta \delta -\gamma k^2}. \end{aligned}$$

Substituting e and \(p_R\) in to \(\pi _{RM}^R\), then differentiating \(\pi _{RM}^R\) with respect to \(p_{N}\), we have

$$\begin{aligned} \frac{\partial \pi _{RM}^R}{\partial p_N}=1-2p_N+w_N \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{RM}^R}{\partial p^2_N}=-2 \end{aligned}$$

As \(\frac{\partial ^2 \pi _{RM}^R}{\partial p_N^2}<0\), we have \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{MR}^R}{\partial p_N}=0\), that is,

$$\begin{aligned} p_N=\frac{1+w_N}{2}. \end{aligned}$$

Substituting \(p_N\), e and \(p_R\) into \(\pi _{MM}^R\), and Differentiating \(\pi _{MM}^R\) with respect to \(w_{N}\), we have \(\frac{\partial \pi _{MM}^R}{\partial w_N}=\frac{1}{2}-\frac{(2w_N-c_N)[4(1-\delta +\delta \gamma )\beta \delta -\gamma k^2]-4\beta \delta \gamma c_R}{2[4(1-\delta )\beta \delta -\gamma ^2 k^2]}\), \(\frac{\partial ^2 \pi _{MM}^R}{\partial w^2_N}=-1-\frac{4\beta \delta ^2\gamma }{4(1-\delta )\beta \delta -\gamma k^2}<0\). By solving \(\frac{\partial \pi _{MM}^R}{\partial w_N}=0\), then we have

$$\begin{aligned} w_{NM}^{R*}=\frac{1+c_N}{2}-\frac{2(\delta -c_R)\beta \delta \gamma }{4(1-\delta +\delta \gamma )\beta \delta -\gamma k^2}. \end{aligned}$$

In summary, we have the optimal decisions of the retailer and the manufacturer when \(\delta p_N<p_R\le \delta p_N+ke\) are

$$\begin{aligned} e_M^{R*}= & {} \frac{\gamma k(\delta {-}c_R)}{2[4(1{-}\delta {+}\delta \gamma )\beta \delta {-}\gamma k^2]}\\&{+}\,\frac{\gamma k(\delta c_N{-}c_R)}{2[4\beta \delta (1{-}\delta ){-}\gamma k^2]}\\ p_{RM}^{R*}&{=}&\frac{\delta (3{+}c_N)}{4}{+}\frac{(\delta c_N{-}c_R)[\gamma k^2{-}2(1{-}\delta )\beta \delta ]}{2[4(1{-}\delta )\beta \delta {-}\gamma k^2]}\\&{-}\,\frac{(\delta {-}c_R)[2(1{-}\delta {+}\delta \gamma )\beta \delta {-}\gamma k^2]}{2[4(1{-}\delta {+}\delta \gamma )\beta \delta -\gamma k^2]}\\ p_{RM}^{R*}&{=}&\frac{\delta (1{-}c_N){+}4c_R}{4}{+}\frac{(\delta c_N{-}c_R)[(1{-}\delta )\beta \delta }{4(1{-}\delta )\beta \delta {-}\gamma k^2}\\&{+}\,\frac{(\delta {-}c_R)(1-\delta {+}\delta \gamma )\beta \delta }{4(1{-}\delta {+}\delta \gamma )\beta \delta {-}\gamma k^2}\\ p_{NM}^{R*}= & {} \frac{3{+}c_N}{4}{-}\frac{(\delta {-}c_R)\beta \delta \gamma }{4(1{-}\delta {+}\delta \gamma )\beta \delta {-}\gamma k^2}\\ \pi _{MM}^{R*}= & {} \frac{\{(1-c_N)[4(1{-}\delta )\beta \delta {-}\gamma k^2] {-}4(\delta c_N{-}c_R)\delta \gamma \beta \}^2}{8[4(1{-}\delta {+}\delta \gamma )\beta \delta {-}\gamma k^2][4(1{-}\delta )\beta \delta {-}\gamma k^2]}\\ \pi _{RM}^{R*}= & {} \frac{[4(1{-}\delta )\beta \delta {-}\gamma k^2]^2(1{-}c_N)^2{+}8\beta \gamma \{[4(1{-}\delta )\beta \delta {-}\gamma k^2][(2{-}c_N{+}c_N^2)\delta ^2{-}(3{+}c_N)\delta c_R{+}2c_R^2]{+}2(\delta c_N{-}c_R)^2\beta \delta ^2\gamma \}}{16[4(1{-}\delta {+}\delta \gamma )\beta \delta {-}\gamma k^2][4(1{-}\delta )\beta \delta {-}\gamma k^2]} \end{aligned}$$

1.11 Proof of Proposition 11

Assume \(\delta p_N+ke<p_R\le p_N\), \(\pi _{RH}^R=(1-p_N)(p_N-w_N)\), we can get \(p_N\) which can maximize the profit by solving \(\frac{\partial \pi _{RH}^R}{\partial p_N}=0\), that is,

$$\begin{aligned} p_N=\frac{1+w_N}{2}. \end{aligned}$$

Substituting \(p_N\) into \(\pi _{MH}^R\), we have

$$\begin{aligned} \pi _{MH}^R=\frac{(1-w_N)(w_N-c_N)}{2} \end{aligned}$$

By differentiating \(\pi _{MH}^R\) with respect to \(w_N\), we have

$$\begin{aligned} \frac{\partial \pi _{MH}^R}{\partial w_N}=-w_N+\frac{1+c_N}{2} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \pi _{MH}^R}{\partial w_N^2}=-1 \end{aligned}$$

As \(\frac{\partial ^2\pi _{MH}^R}{\partial w_N^2}<0\), by solving \(\frac{\partial \pi _{MH}^R}{\partial w_N}=0\), we have

$$\begin{aligned} w_{NH}^{R*}=\frac{1+c_N}{2} \end{aligned}$$

Substituting \(w_{NH}^R\) into \(\pi _{MH}^R\), the price of the new product is

$$\begin{aligned} p_{NH}^{R*}=\frac{3+c_N}{4} \end{aligned}$$

and the optimal profit of the manufacturer and the retailer are

$$\begin{aligned} \pi _{MH}^{R*}=\frac{(1-c_N)^2}{8} \end{aligned}$$

and

$$\begin{aligned} \pi _{RH}^{R*}=\frac{(1-c_N)^2}{16}. \end{aligned}$$

1.12 Proof of Proposition 12

$$\begin{aligned} \pi _{RL}^{R*}-\pi _{RH}^{R*}= & {} \frac{\beta \{(4\beta \delta -\gamma ^2 k^2)(\delta c_N-c_R)^2+3[4\beta \delta (1-\delta )-\gamma ^2 k^2](\delta -c_R)^2\}}{4(4\beta \delta -\gamma ^2 k^2)[4\beta \delta (1-\delta )-\gamma ^2 k^2]}>0\\ \pi _{RM}^{R*}-\pi _{RH}^{R*}= & {} \frac{\beta \gamma \{(4\beta \delta (1-\delta +\delta \gamma )-\gamma k^2)(\delta c_N-c_R)^2+3[4\beta \delta (1-\delta )-\gamma k^2](\delta -c_R)^2\}}{4[4\beta \delta (1-\delta )-\gamma k^2][4\beta \delta (1-\delta +\delta \gamma )-\gamma k^2]}>0 \end{aligned}$$

\(\pi _{RL}^{R*}-\pi _{RM}^{R*}=\frac{\beta (1-\gamma )[4\beta \delta (1-\delta )-\gamma k^2-\gamma ^2 k^2]}{4}\left\{ \frac{(\delta c_N-c_R)^2}{[4\beta \delta (1-\delta )-\gamma k^2][4\beta \delta (1-\delta )-\gamma ^2 k^2]}\right. \left. +\frac{3(\delta -c_R)^2}{(4\beta \delta -\gamma ^2 k^2)[4\beta \delta (1-\delta +\delta \gamma )-\gamma k^2]}\right\} \). As \(\gamma _1=\frac{\sqrt{16(1-\delta )\beta \delta +k^2}-k}{2k}\), it is easy to get \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma _1<\min \left\{ \frac{4(1-\delta )\beta \delta }{k^2},\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right\} \). Then the Proposition is proved.

To avoid trivial calculations, we assume \(0<\delta \le \frac{1-c_N^2}{1+c_N^2}\) under the comparisons of the manufacturer’s profits in different pricing strategies.

As \(\pi _{ML}^{R*}-\pi _{MH}^{R*}=\frac{\beta \delta \{4\beta \delta (\delta -c_R)^2-(4\beta \delta -\gamma ^2 k^2)(1-c_N)(\delta c_N+\delta -2c_R)\}}{2(4\beta \delta -\gamma ^2 k^2)[4\beta \delta (1-\delta )-\gamma ^2 k^2]}\), denoting \(I=4\beta \delta (\delta -c_R)^2-(4\beta \delta -\gamma ^2 k^2)(1-c_N)(\delta c_N+\delta -2c_R)\), we can find I has the same symbol with \(\pi _{ML}^{R*}-\pi _{MH}^{R*}\). Furthermore I is a convex function of \(\gamma \), by solving \(I=0\) with \(\gamma >0\), we have the threshold \({{\hat{\gamma }}}=2\sqrt{\frac{\beta \delta \{(1-c_N)(\delta c_N+\delta -2c_R)-(\delta -c_R)^2\}}{(1-c_N)(\delta c_N+\delta -2c_R)k}}\). Then we compare \({{\hat{\gamma }}}\) with \(\min \left\{ \frac{4(1-\delta )\beta \delta }{k^2},\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right\} \).

  1. (i)

    When \(2\sqrt{(1-\delta )\beta \delta }<k<2\sqrt{2(1-\delta )\beta \delta }\), by comparing \({{\hat{\gamma }}} \) with \(\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\), we have \({\hat{\gamma }}^2-\left( \frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right) ^2=\frac{2\beta \delta \{-2c_R^2+2(\delta c_N+\delta +c_N-1)c_R+\delta (1-\delta -\delta c_N^2-c_N^2)\}}{(1-c_N)(\delta c_N+\delta -2c_R)k^2}\). Denoting \(T=-2c_R^2+2(\delta c_N+\delta +c_N-1)c_R+\delta (1-\delta -\delta c_N^2-c_N^2)\), \({\hat{\gamma }}^2-\left( \frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right) ^2\) has same symbol with T. As T is a continuous and concave function of \(c_R\), with the assumption \(0<\delta \le \frac{1-c_N^2}{1+c_N^2}\) and \(c_R<\delta c_N\) we have \(T|_{c_R=0}=\delta (1-\delta -\delta c_N^2-c_N^2)\ge 0\) and \(T|_{c_R=\delta c_N}=\delta (1-\delta )(1-c_N)^2>0\). Thus we can conclude \({\hat{\gamma }}\ge \frac{\sqrt{2(1-\delta )\beta \delta }}{k}\).

  2. (ii)

    When \(k\ge 2\sqrt{2(1-\delta )\beta \delta }\), by comparing \({{\hat{\gamma }}} \) with \(\frac{4(1-\delta )\beta \delta }{k^2}\), we have

    \({\hat{\gamma }}^2-\left( \frac{4(1-\delta )\beta \delta }{k^2}\right) ^2=\frac{4\beta \delta \{[(1-c_N)(\delta c_N+\delta -2c_R)-(\delta -c_R)^2]k^2-4\beta \delta (1-\delta )^2(1-c_N)(\delta c_N+c_N-2c_R)\}}{(1-c_N)(\delta c_N+\delta -2c_R)k^4}\). With \(0<\delta \le \frac{1-c_N^2}{1+c_N^2}\) and \(c_R<\delta c_N\), we can prove \((1-c_N)(\delta c_N+\delta -2c_R)-(\delta -c_R)^2\) is positive and \({\hat{\gamma }}^2-\left( \frac{4(1-\delta )\beta \delta }{k^2}\right) ^2\) is increasing in k. With same approach, we have \({{\hat{\gamma }}^2-\left( \frac{4(1-\delta )\beta \delta }{k^2}\right) ^2}|_{k=2\sqrt{2(1-\delta )\beta \delta }}>0\). Thus we can conclude \({{\hat{\gamma }}}-\frac{4(1-\delta )\beta \delta }{k^2}>0\). Then we have I is negative in \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma <\min \left\{ \frac{4(1-\delta )\beta \delta }{k^2},\frac{\sqrt{2(1-\delta )\beta \delta }}{k}\right\} \) with the assumption \(0<\delta \le \frac{1-c_N^2}{1+c_N^2}\). Thus, we can conclude \(\pi _{ML}^{R*}-\pi _{MH}^{R*}\le 0\).

As \(\pi _{MM}^{R*}-\pi _{MH}^{R*}=\frac{\beta \delta \gamma \{4\beta \delta \gamma (\delta c_N-c_R)^2-(4\beta \delta (1-\delta )-\gamma k^2)(1-c_N)(\delta c_N+\delta -2c_R)\}}{2[4\beta \delta (1-\delta )-\gamma k^2][4\beta \delta (1-\delta +\delta \gamma )-\gamma k^2]}\), with same method with \(\pi _{ML}^{R*}-\pi _{MH}^{R*}\) and denoting \(X=4\beta \delta \gamma (\delta c_N-c_R)^2-(4\beta \delta (1-\delta )-\gamma k^2)(1-c_N)(\delta c_N+\delta -2c_R)\), by solving \(X=0\), we have \(\gamma _2=\frac{4\beta \delta (1-\delta )(1-c_N)(\delta c_N+\delta -2c_R)}{(1-c_N)(\delta c_N+\delta -2c_R)k^2+4\beta \delta (\delta c_N-c_R)^2}\). We can easily prove \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma _2\le \frac{4(1-\delta )\beta \delta }{k^2}\). Thus, we have \(\pi _{MM}^{R*}<\pi _{MH}^{R*}\) when \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma <\gamma _2\); \(\pi _{MM}^{R*}\ge \pi _{MH}^{R*}\) when\( \gamma _2\le \gamma <\frac{4(1-\delta )\beta \delta }{k^2}\).

In summary, we can conclude that \(\pi _{MM}^{R*}<\pi _{MH}^{R*}\) when \(\frac{2(1-\delta )\beta \delta }{k^2}<\gamma <\gamma _2\); \(\pi _{MM}^{R*}\ge \pi _{MH}^{R*}\) when\(\gamma _2\le \gamma <\frac{4(1-\delta )\beta \delta }{k^2}\), the manufacture will not use low price strategy.

1.13 Proof of Proposition 13

  1. (i)

    As \(c_R<\delta c_N<\delta \), we have \(p_N^{C**}-p_{NM}^{R**}=\frac{[4(1-\delta +\delta \gamma )\beta \delta -\gamma k^2]c_N-[4(1-\delta +\gamma c_R)\beta \delta -\gamma k^2]}{4[4(1-\delta +\delta \gamma )\beta \delta -\gamma k^2]}<-\frac{1-c_N}{4}<0\). In addition, it is easy to prove \(p_N^{C**}<p_{NH}^{R**}\), \(p_N^{C**}<p_N^{M**}\) and \(p_N^{R**}\le p_N^{M**}\). Thus we can conclude that \(p_N^{C**}<p_N^{R**}\le p_N^{M**}\).

  2. (ii)

    \(w_N^{M**}-w_{NM}^{R**}=\frac{(\delta c_N-c_R)\gamma k}{4(1-\delta +\delta \gamma )\beta \delta -\gamma k^2}>0\) and \(w_N^{M**}=w_{NH}^{R**}\), then we get \(w_N^{M**}\ge w_{N}^{R**}\).

1.14 Proof of Proposition 14

(ii) \(e^{M**}-e_L^{C**}=-\frac{4(1-\delta )(\delta c_N-c_R)\gamma k\beta \delta }{[4(1-\delta )\beta \delta -\gamma ^2 k^2][8(1-\delta )\beta \delta -\gamma ^2 k^2]}<0\) and \(e^{M**}-e_M^{C**}=-\frac{(\delta c_N-c_R)[4(1-\delta )\beta \delta +\gamma k^2-\gamma ^2 k^2]\gamma k}{[4(1-\delta )\beta \delta -\gamma k^2][8(1-\delta )\beta \delta -\gamma ^2 k^2]}<0\), then we an conclude that \(e^{M**}<e^{C**}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, W. Optimal pricing and greening decisions in a supply chain when considering market segmentation. Ann Oper Res 324, 93–130 (2023). https://doi.org/10.1007/s10479-022-04663-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04663-x

Keywords

Navigation