Skip to main content
Log in

Resource allocation and target setting: a CSW–DEA based approach

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Resource allocation and target setting is part of the strategic management process of an organization. In this paper, we address the important issue of “optimally” allocating additional resources to the different operating units. Three different managerial interpretations of this question are presented, differing on the assumptions on the expected output increases. In each case, using multiplier data envelopment analysis (DEA) models and common set of weights (CSW), a new procedure for resource allocation and target setting is proposed. The proposed approach is innovative in its use of CSW and multi objective optimization, both of which are consistent with the centralized decision making character of the problem. The validity and usefulness of the proposed CSW–DEA models is shown using different datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amirteimoori, A., & Mohaghegh Tabar, M. (2010). Resource allocation and target setting in data envelopment analysis. Expert Systems with Applications, 37(4), 3036–3039.

    Article  Google Scholar 

  • An, Q., Tao, X., Xiong, B., & Chen, X. (2021). Frontier-based incentive mechanisms for allocating common revenues or fixed costs. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2021.12.039

    Article  Google Scholar 

  • An, Q., Wen, Y., Ding, T., & Li, Y. (2019). Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method. Omega, 85, 16–25.

    Article  Google Scholar 

  • Asghariniya, S., Zhiani Rezai, H., & Mehrabian, S. (2020). Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 10(3), 257–273.

    Article  Google Scholar 

  • Athanassopoulos, A. D. (1998). Decision support for target-based resource allocation of public services in multiunit and multilevel systems. Management Science, 44, 173–187.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale in efficiencies in data envelopment analysis. Management Science, 30, 1078–1092.

    Article  Google Scholar 

  • Beasley, J. E. (2003). Allocating fixed costs and resources via data envelopment analysis. European Journal of Operational Research, 147(1), 198–216.

    Article  Google Scholar 

  • Bi, G., Ding, J., Luo, Y., & Liang, L. (2011). Resource allocation and target setting for parallel production system based on DEA. Applied Mathematical Modelling, 35(9), 4270–4280.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Chen, M., Ang, S., Jiang, L., & Yang, F. (2020). Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences. Or Spectrum, 42, 529–565.

    Article  Google Scholar 

  • Contreras, I., & Lozano, S. (2020). Allocating additional resources to public universities. A DEA bargaining approach. Socio-Economic Planning Sciences, 71, 100752.

    Article  Google Scholar 

  • Cook, W. D., & Kress, M. (1999). Characterizing an equitable allocation of shared costs: A DEA approach. European Journal of Operational Research, 119(3), 652–661.

    Article  Google Scholar 

  • Cook, W. D., & Zhu, J. (2005). Allocation of shared costs among decision making units: A DEA approach. Computers and Operations Research, 32(8), 2171–2178.

    Article  Google Scholar 

  • Ding, T., Chen, Y., Wu, H., & Wei, Y. (2018). Centralized fixed cost and resource allocation considering technology heterogeneity: A DEA approach. Annals of Operations Research, 268(1), 497–511.

    Article  Google Scholar 

  • Du, J., Cook, W. D., Liang, L., & Zhu, J. (2014). Fixed cost and resource allocation based on DEA cross efficiency. European Journal of Operational Research, 235(1), 206–214.

    Article  Google Scholar 

  • Estañ, T., Llorca, N., Martínez, R., & Sánchez-Soriano, J. (2021). On how to allocate the fixed cost of transport systems. Annals of Operations Research, 301, 81–105.

    Article  Google Scholar 

  • Fang, L., & Zhang, C. Q. (2008). Resource allocation based on the DEA model. Journal of the Operational Research Society, 59(8), 1136–1141.

    Article  Google Scholar 

  • Fare, R., Grabowski, R., Grosskopf, S., & Kraft, S. (1997). Efficiency of a fixed but allocate able input: A nonparametric approach. Economic Letters, 56, 187–193.

    Article  Google Scholar 

  • Golany, B., Phillips, F. Y., & Rousseau, J. J. (1993). Models for improved effectiveness based on DEA efficiency results. IIE Transactions, 25(6), 2–10.

    Article  Google Scholar 

  • Golany, B., & Tamir, E. (1995). Evaluating efficiency-effectiveness-equality trade-offs: A data envelopment analysis approach. Management Science, 41, 1172–1184.

    Article  Google Scholar 

  • Hadi-Vencheh, A., Foroughi, A. A., & Soleimani-damaneh, M. (2008). A DEA model for resource allocation. Economic Modelling, 25(5), 983–993.

    Article  Google Scholar 

  • Hosseinzadeh Lotfi, F., Hatami-Marbini, A., Agrell, P., Aghayi, A., & Gholami, K. (2013). Allocating fixed resources and setting targets using a common-weights DEA approach. Computers and Industrial Engineering, 64, 631–640.

    Article  Google Scholar 

  • Hosseinzadeh Lotfi, F., Noora, A. A., Jahanshahloo, G. R., Gerami, J., & Mozaffari, M. R. (2010). Centralized resource allocation for enhanced Russell models. Journal of Computational and Applied Mathematics, 235, 1–10.

    Article  Google Scholar 

  • Jahanshahloo, G. R., Memariani, A., Hosseinzadeh Lotfi, F., & Rezai, H. R. (2005). A note on some of DEA models and finding efficiency and complete ranking using common set of weights. Applied Mathematics and Computation, 166, 265–281.

    Article  Google Scholar 

  • Korhonen, P., & Syrjanen, M. (2004). Resource allocation based on efficiency analysis. Management Science, 50, 1134–1144.

    Article  Google Scholar 

  • Li, F., Song, J., Dolgui, A., & Liang, L. (2017). Using common weights and efficiency invariance principles for resource allocation and target setting. International Journal of Production Research, 55(17), 4982–4997.

    Article  Google Scholar 

  • Liu, F.-H.F., & Peng, H. H. (2008). Ranking of units on the DEA frontier with common weights. Computers & Operations Research, 35, 1624–1637.

    Article  Google Scholar 

  • Liu, T., Zheng, Z., & Du, Y. (2021). Evaluation on regional science and technology resources allocation in China based on the zero sum gains data envelopment analysis. Journal of Intelligent Manufacturing, 32, 1729–1737.

    Article  Google Scholar 

  • Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of Productivity Analysis, 22, 143–161.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Adenso-Díaz, B. (2004). Centralized target setting for regional recycling operations using DEA. Omega, 32, 101–110.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Brännlund, R. (2009). Centralized reallocation of emission permits using DEA. European Journal of Operational Research, 193, 752–760.

    Article  Google Scholar 

  • Lozano, S., Villa, G., & Canca, D. (2011). Application of centralised DEA approach to capital budgeting in Spanish ports. Computers and Industrial Engineering, 60, 455–465.

    Article  Google Scholar 

  • Nemati, M., & Matin, R. K. (2019). A data envelopment analysis approach for resource allocation with undesirable outputs: An application to home appliance production companies. Sādhanā, 44, 11.

    Article  Google Scholar 

  • Rezaei Sadrabadi, M., & Sadjadi, S. J. (2009). A new interactive method to solve multi objective linear programming problems. Journal of Software Engineering and Applications, 2, 237–247.

    Article  Google Scholar 

  • Ripoll-Zarraga, A. E., & Lozano, S. (2020). A centralised DEA approach to resource reallocation in Spanish airports. Annals of Operations Research, 288, 701–732.

    Article  Google Scholar 

  • Sadeghi, J., Ghiyasi, M., & Dehnokhalaji, A. (2020). Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control and Optimization, 10(2), 127–142.

    Article  Google Scholar 

  • Sharahi, S. J., Khalili-Damghani, K., Abtahi, A. R., & Rashidi Komijan, A. (2021). Fuzzy type-II resource allocation and target setting in data envelopment analysis: a real case of gas refineries. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 29(01), 65–105.

    Article  Google Scholar 

  • Soltanifar, M. (2011). Ranking of different common set of weights models using a voting model and its application in determining efficient DMUs. International Journal of Advanced Operations Management, 3(3–4), 290–308.

    Article  Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. Wiley.

    Google Scholar 

  • Tone, K. (2017). Advances in DEA theory and applications: With extensions to forecasting models. Wiley.

    Book  Google Scholar 

  • Wang, M., Li, L., Dai, Q., & Shi, F. (2021). Resource allocation based on DEA and non-cooperative game. Journal of Systems Science and Complexity, 34, 2231–2249.

    Article  Google Scholar 

  • Wei, Q. L., Zhang, J., & Zhang, X. (2000). An inverse DEA model for input/output estimate. European Journal of Operational Research, 121(1), 151–163.

    Article  Google Scholar 

  • White, S. W., & Bordoloi, S. K. (2015). A review of DEA-based resource and cost allocation models: Implications for services. International Journal of Services and Operations Management, 20(1), 86–101.

    Article  Google Scholar 

  • Wu, J., An, Q., Ali, S., & Liang, L. (2013). DEA based resource allocation considering environmental factors. Mathematical and Computer Modelling, 58(5–6), 1128–1137.

    Article  Google Scholar 

  • Yang, T., Wang, P., & Li, F. (2018). Centralized resource allocation and target setting based on data envelopment analysis model. Mathematical Problems in Engineering Article ID 3826096.

  • Yang, Z., & Zhang, Q. (2015). Resource allocation based on DEA and modified Shapley value. Applied Mathematics and Computation, 263, 280–286.

    Article  Google Scholar 

  • Zhang, B., Xin, Q., Tang, M., Niu, N., Du, H., Chang, X., & Wang, Z. (2021). Revenue allocation for interfirm collaboration on carbon emission reduction: Complete information in a big data context. Annals of Operations Research https://doi.org/10.1007/s10479-021-04017-z.

  • Zhang, J., Wu, Q., & Zhou, Z. (2019). A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. Journal of Cleaner Production, 228, 29–39.

    Article  Google Scholar 

  • Zhang, X. S., & Cui, J. C. (1999). A project evaluation system in the state economic information system of china an operations research practice in public sectors. International Transactions in Operational Research, 6, 441–452.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1983). An interactive programming method for solving the multiple criteria problem. Management Science, 22(6), 652–663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Soltanifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Proof of theorem 1

Suppose \({\mathbf{(u,v,\alpha }}_{{\mathbf{1}}} {\mathbf{,\alpha }}_{{\mathbf{2}}} {\mathbf{,}}...{{\varvec{\upalpha}}}_{{\mathbf{n}}} {\mathbf{)}}\) is a weak efficient solution of model (4). It is clear that this solution will be a feasible solution of model (5). By contradiction assume that this solution is not a weak efficient solution of model (5), then there is a feasible solution \({\mathbf{(}}\overline{{\mathbf{u}}} {\mathbf{,}}\overline{{\mathbf{v}}} {\mathbf{,}}\overline{{{\varvec{\upalpha}}}}_{{\mathbf{1}}} {\mathbf{,}}\overline{{{\varvec{\upalpha}}}}_{{\mathbf{2}}} {\mathbf{,}}...{\mathbf{,}}\overline{{{\varvec{\upalpha}}}}_{{\mathbf{n}}} {\mathbf{)}}\) of model (5) such that \({\mathbf{uy}}_{{\mathbf{j}}} < \overline{{\mathbf{u}}} {\mathbf{y}}_{{\mathbf{j}}} \quad \& \,\quad {\mathbf{vx}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {{{\varvec{\upalpha}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} > \,\overline{{\mathbf{v}}} {\mathbf{x}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {\overline{{{\varvec{\upalpha}}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} ,j = 1,2,...,n\). According to the constraints and variables of models (4) and (5), \(\left( {{\mathbf{uy}}_{{\mathbf{j}}} } \right),\left( {\overline{{\mathbf{u}}} {\mathbf{y}}_{{\mathbf{j}}} } \right),\left( {{\mathbf{vx}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {{{\varvec{\upalpha}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} } \right),\,\left( {\overline{{\mathbf{v}}} {\mathbf{x}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {\overline{{{\varvec{\upalpha}}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} } \right) > 0,j = 1,2,...,n\) and we have \({\mathbf{uy}}_{{\mathbf{j}}} < \overline{{\mathbf{u}}} {\mathbf{y}}_{{\mathbf{j}}} \quad \& \,\quad \frac{1}{{{\mathbf{vx}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {{{\varvec{\upalpha}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} }} < \,\frac{1}{{\overline{{\mathbf{v}}} {\mathbf{x}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {\overline{{{\varvec{\upalpha}}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} }},j = 1,2,...,n\). This implies that \(\frac{{{\mathbf{uy}}_{{\mathbf{j}}} }}{{{\mathbf{vx}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {{{\varvec{\upalpha}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} }} < \frac{{\overline{{\mathbf{u}}} {\mathbf{y}}_{{\mathbf{j}}} }}{{\overline{{\mathbf{v}}} {\mathbf{x}}_{{\mathbf{j}}} {\mathbf{ + }}\left\| {\overline{{{\varvec{\upalpha}}}}_{{\mathbf{j}}} } \right\|_{{\mathbf{1}}} }},\,\,j = 1,2,...,n\) which contradicts the weak efficiency of \({\mathbf{(u,v,\alpha }}_{{\mathbf{1}}} {\mathbf{,\alpha }}_{{\mathbf{2}}} {\mathbf{,}}...{{\varvec{\upalpha}}}_{{\mathbf{n}}} {\mathbf{)}}\) for model (4).

Appendix 2

2.1 Proof of theorem 2

First of all, note that the constraints of models (6) and (10) are equivalent, i.e. both models define the same feasible region. Moreover, their objective functions are also the same. Thus, the objective function in model (6) is the sum of the differences between the weighted sum of the outputs and the weighted sum of the inputs and this is maximized. In model (10), the slack variables \(d_{j}\) is equal to the opposite difference, i.e. the weighted sum of the inputs and the weighted sum of the outputs, and the sum of these slacks variables is minimized. This shows that models (6) and (10) are equivalent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanifar, M., Hosseinzadeh Lotfi, F., Sharafi, H. et al. Resource allocation and target setting: a CSW–DEA based approach. Ann Oper Res 318, 557–589 (2022). https://doi.org/10.1007/s10479-022-04721-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04721-4

Keywords

Navigation