Skip to main content

Advertisement

Log in

The influence of positive and negative salvage values on supply chain financing strategies

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We establish a supply chain finance scheme containing a cash-strapped supplier, a creditworthy retailer as well as a financial institution to explore whether the positive or negative salvage value has a crucial impact on the order decisions and financing strategies. Buyer-backed purchase order financing and advanced payment discount (APD) financing are considered to settle the supplier’s fund shortage problem. We found that the positive and negative salvage values affect (1) the retailer’s optimal order quantity. The buyer orders more products with positive salvage value than those with no salvage value and reduces orders for items with negative salvage value; (2) the profits in the supply chain. Ordering items with a positive salvage value can reduce the risk of loss compared to orders with no salvage value, which leads to more gains for the buyer and the whole supply chain, while orders for items with negative salvage increase the losses, resulting in lower profits; (3) the threshold of the retailer’s internal asset level under single financing. The higher salvage value brings more inventory risk to the retailer; hence the retailer should have a higher asset level to ensure that there is sufficient capital to finance the supplier via APD. Finally, we verify the results by numerical experiments and present some managerial implications for different industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babich, V. (2010). Independence of capacity ordering and financial subsidies to risky suppliers. Manufacturing & Service Operations Management, 12(4), 583–607.

    Article  Google Scholar 

  • Bi, G., Song, L., & Fei, Y. (2018). Dynamic mixed-item inventory control with limited capital and short-term financing. Annals of Operations Research, 35(3), 1–32.

    Google Scholar 

  • Birge, J. R. (2015). OM forum—Operations and finance interactions. Manufacturing Service Operations Management, 17(1), 4–15.

    Article  Google Scholar 

  • Biswas, I., & Avittathur, B. (2018). The price-setting limited clearance sale inventory model. Annals of Operations Research. https://doi.org/10.1007/s10479-018-2811-5

    Article  Google Scholar 

  • Cachon, G. P., & Kök, A. G. (2007). Implementation of the newsvendor model with clearance pricing: How to (and how not to) estimate a salvage value. Manufacturing & Service Operations Management, 9(3), 276–290.

    Article  Google Scholar 

  • Cai, G. G., Chen, X., & Xiao, Z. (2014). The roles of bank and trade credits: Theoretical analysis and empirical evidence. Production and Operations Management, 23(4), 583–598.

    Article  Google Scholar 

  • Cai, Y. J., Chen, Y., Siqin, T., Choi, T. M., & Chung, S. H. (2019). Pay upfront or pay later? Fixed royal payment in sustainable fashion brand franchising. International Journal of Production Economics, 214, 95–105.

    Article  Google Scholar 

  • Cao, E., & Yu, M. (2018). Trade credit financing and coordination for an emission-dependent supply chain. Computers & Industrial Engineering, 119, 50–62.

    Article  Google Scholar 

  • Cao, Y., Zhang, J. H., & Ma, X. Y. (2019). Optimal financing and production decisions for a supply chain with buyer-backed purchase order financing contract. IEEE Access, 7, 119384–119392.

    Article  Google Scholar 

  • Chen, J., Zhou, Y. W., & Zhong, Y. (2017). A pricing/ordering model for a dyadic supply chain with buyback guarantee financing and fairness concerns. International Journal of Production Research, 55(18), 5287–5304.

    Article  Google Scholar 

  • Chen, X., Lu, Q., & Cai, G. G. (2017). Retailer early payment financing in pull supply chains. Social Science Electronic Publishing. https://doi.org/10.2139/ssrn.3021460

    Article  Google Scholar 

  • Chod, J. (2017). Inventory, risk shifting, and trade credit. Management Science, 63(10), 3207–3225.

    Article  Google Scholar 

  • Choi, T. M. (2020a). Supply chain financing using blockchain: Impacts on supply chains selling fashionable products. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03615-7

    Article  Google Scholar 

  • Choi, T. M. (2020b). Financing product development projects in the blockchain era: Initial coin offerings versus traditional bank loans. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2020.3032426

    Article  Google Scholar 

  • Dobbs, I. M. (2004). Replacement investment: Optimal economic life under uncertainty. Journal of Business Finance & Accounting, 31(5–6), 729–757.

    Article  Google Scholar 

  • Dong, G., Liang, L., Wei, L., Xie, J., & Yang, G. (2021). Optimization model of trade credit and asset-based securitization financing in carbon emission reduction supply chain. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04011-5

    Article  Google Scholar 

  • Du, M., Chen, Q., Xiao, J., Yang, H., & Ma, X. (2020). Supply chain finance innovation using blockchain. IEEE Transactions on Engineering Management, 67(4), 1045–1058.

    Article  Google Scholar 

  • Fan, X., Zhao, W., Zhang, T., & Yan, E. (2020). Mobile payment, third-party payment platform entry and information sharing in supply chains. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03749-8

    Article  Google Scholar 

  • Fu, H., Ke, G. Y., Lian, Z., & Zhang, L. (2021). 3PL firm’s equity financing for technology innovation in a platform supply chain. Transportation Research Part E: Logistics and Transportation Review, 147, 102239.

    Article  Google Scholar 

  • Fisher, M., & Raman, A. (1996). Reducing the cost of demand uncertainty through accurate response to early sales. Operations Research, 44(1), 87–99.

    Article  Google Scholar 

  • Gamba, A., & Triantis, A. J. (2014). Corporate risk management: Integrating liquidity, hedging, and operating policies. Management Science, 60(1), 246–264.

    Article  Google Scholar 

  • Guo, S., & Liu, N. (2020). Influences of supply chain finance on the mass customization program: Risk attitudes and cash flow shortage. International Transactions in Operational Research, 27(5), 2396–2421.

    Article  Google Scholar 

  • Hu, W., Li, Y., & Govindan, K. (2014). The impact of consumer returns policies on consignment contracts with inventory control. European Journal of Operational Research, 233(2), 398–407.

    Article  Google Scholar 

  • Hua, S., Sun, S., Liu, Z., & Zhai, X. (2021). Benefits of third-party logistics firms as financing providers. European Journal of Operational Research, 294(1), 174–187.

    Article  Google Scholar 

  • Huang, B., Wu, A., & Chiang, D. (2018). Supporting small suppliers through buyer-backed purchase order financing. International Journal of Production Research, 56(18), 6066–6089.

    Article  Google Scholar 

  • Huang, J., Yang, W., & Tu, Y. (2019). Supplier credit guarantee loan in supply chain with financial constraint and bargaining. International Journal of Production Research, 57(22), 7158–7173.

    Article  Google Scholar 

  • Jing, B., Chen, X., & Cai, G. G. (2012). Equilibrium financing in a distribution channel with capital constraint. Production and Operations Management, 21(6), 1090–1101.

    Article  Google Scholar 

  • Kalakbandi, V. K. (2018). Managing the misbehaving retailer under demand uncertainty and imperfect information. European Journal of Operational Research, 269(3), 939–954.

    Article  Google Scholar 

  • Keren, B., & Pliskin, J. S. (2006). A benchmark solution for the risk-averse newsvendor problem. European Journal of Operational Research, 174(3), 1643–1650.

    Article  Google Scholar 

  • Khan, M. A. A., Shaikh, A. A., Panda, G. C., Konstantaras, I., & Cárdenas-Barrón, L. E. (2019). The effect of advance payment with discount facility on supply decisions of deteriorating products whose demand is both price and stock dependent. International Transactions in Operational Research, 27(3), 1343–1367.

    Article  Google Scholar 

  • Kouvelis, P., & Zhao, W. (2012). Financing the newsvendor: Supplier vs. bank, and the structure of optimal trade credit contracts. Operations Research, 60(3), 566–580.

    Article  Google Scholar 

  • Lekkakos, S. D., Johnson, M., & Serrano, A. (2016). Supply chain finance for small and medium sized enterprises: The case of reverse factoring. International Journal of Physical Distribution & Logistics Management, 46(4), 367–392.

    Article  Google Scholar 

  • Li, R., Teng, J. T., & Zheng, Y. (2019). Optimal credit term, order quantity and selling price for perishable products when demand depends on selling price, expiration date, and credit period. Annals of Operations Research, 280(1–2), 377–405.

    Article  Google Scholar 

  • Li, Y., Zhen, X., & Cai, X. (2014). Trade credit insurance, capital constraint, and the behavior of manufacturers and banks. Annals of Operations Research, 240(2), 395–414.

    Article  Google Scholar 

  • Lin, Z., Shi, R., Stecke, K. E., Xiao, W., & Xu, D. (2021). Selling to a financially constrained E-commerce retailer with bankruptcy cost and tax. Transportation Research Part E: Logistics and Transportation Review, 146, 102180.

    Article  Google Scholar 

  • Liu, J., Zhai, X., & Chen, L. (2019). Optimal pricing strategy under trade-in program in the presence of strategic consumers. Omega, 84, 1–17.

    Article  Google Scholar 

  • Maiti, A. K., Maiti, M. K., & Maiti, M. (2009). Inventory model with stochastic lead-time and price dependent demand incorporating advance payment. Applied Mathematical Modelling, 33(5), 2433–2443.

    Article  Google Scholar 

  • Mauer, D. C., & Ott, S. H. (1995). Investment under uncertainty: The case of replacement investment decisions. Journal of Financial and Quantitative Analysis, 30(4), 581–605.

    Article  Google Scholar 

  • Narayanan, V., Raman, A., & Singh, J. (2005). Agency costs in a supply chain with demand uncertainty and price competiftion. Management Science, 51(1), 120–132.

    Article  Google Scholar 

  • Nwalozie, C. (2011). All about the TJX Companies. https://doi.org/10.2139/ssrn.1872210

    Article  Google Scholar 

  • Petruzzi, N. C., & Dada, M. (1999). Pricing and the newsvendor problem: A review with extensions. Operations Research, 47(2), 183–194.

    Article  Google Scholar 

  • Qin, J., Han, Y., Wei, G., & Xia, L. (2019). The value of advance payment financing to carbon emission reduction and production in a supply chain with game theory analysis. International Journal of Production Research, 58(1), 200–219.

    Article  Google Scholar 

  • Reindorp, M., Tanrisever, F., & Lange, A. (2018). Purchase order financing: Credit, commitment, and supply chain consequences. Operations Research, 66(5), 1287–1303.

    Article  Google Scholar 

  • Reza-Gharehbagh, R., Asian, S., Hafezalkotob, A., & Wei, C. (2021). Reframing supply chain finance in an era of reglobalization: On the value of multi-sided crowdfunding platforms. Transportation Research Part E: Logistics and Transportation Review, 149, 102298.

    Article  Google Scholar 

  • Tang, C. S., Yang, S. A., & Wu, J. (2018). Sourcing from suppliers with financial constraints and performance risk. Manufacturing & Service Operations Management, 20(1), 70–84.

    Article  Google Scholar 

  • Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management Science, 48(8), 992–1007.

    Article  Google Scholar 

  • Tsay, A. (2001). Managing retail channel overstock: Markdown money and return policies. Journal of Retailing, 77(4), 457–492.

    Article  Google Scholar 

  • Tunca, T. I., & Zhu, W. (2018). Buyer intermediation in supplier finance. Management Science, 64(12), 5631–5650.

    Article  Google Scholar 

  • Van der Vliet, K., Reindorp, M. J., & Fransoo, J. C. (2015). The price of reverse factoring: Financing rates vs. payment delays. European Journal of Operational Research, 242(3), 842–853.

    Article  Google Scholar 

  • Wang, C. X., & Webster, S. (2009). Markdown money contracts for perishable goods with clearance pricing. European Journal of Operational Research, 196(3), 1113–1122.

    Article  Google Scholar 

  • Wang, H., Li, S., & Luo, J. (2018). Optimal markdown pricing for holiday basket with customer valuation. International Journal of Production Research, 56(18), 5982–5996.

    Article  Google Scholar 

  • Wang, J., Zhao, L., & Huchzermeier, A. (2021). Operations-finance interface in risk management: Research evolution and opportunities. Production Operations Management, 30(2), 355–389.

    Article  Google Scholar 

  • Welke, W. R. (1988). Accounting for “negative salvage.” Journal of Accounting Education, 6(2), 325–329.

    Article  Google Scholar 

  • Wu, A. (2017). A supportive pricing model for suppliers with purchase order financing. International Journal of Production Research, 55(19), 5632–5646.

    Article  Google Scholar 

  • Xiao, Y., & Zhang, J. (2018). Preselling to a retailer with cash flow shortage on the manufacturer. Omega, 80, 43–57.

    Article  Google Scholar 

  • Xu, X., & Birge, J. R. (2004). Joint Production and Financing Decisions: Modeling and Analysis. https://doi.org/10.2139/ssrn.652562

    Article  Google Scholar 

  • Yan, N., He, X., & Liu, Y. (2018). Financing the capital-constrained supply chain with loss aversion: Supplier finance vs. supplier investment. Omega, 88, 162–178.

    Article  Google Scholar 

  • Yan, N., Liu, Y., Xu, X., & He, X. (2020). Strategic dual-channel pricing games with e-retailer finance. European Journal of Operational Research, 283(1), 138–151.

    Article  Google Scholar 

  • Yang, C., Fang, W., & Zhang, B. (2021). Financing a risk-averse manufacturer in a pull contract: Early payment versus retailer investment. International Transactions in Operational Research, 28(5), 2548–2580.

    Article  Google Scholar 

  • Yang, S. A., & Birge, J. R. (2013). How inventory is (should be) financed: Trade credit in supply chains with demand uncertainty and costs of financial distress. https://doi.org/10.2139/ssrn.1734682.

  • Yang, S. A., Birge, J. R., & Parker, R. P. (2015). The supply chain effects of bankruptcy. Management Science, 61(10), 2320–2338.

    Article  Google Scholar 

  • Yu, K., & He, D. (2018). The choice between bankruptcy liquidation and bankruptcy reorganization: A model and evidence. Journal of Management Analytics, 5(3), 170–197.

    Article  Google Scholar 

  • Zhang, R., Li, J., Huang, Z., & Liu, B. (2019). Return strategies and online product customization in a dual-channel supply chain. Sustainability, 11(12), 3482.

    Article  Google Scholar 

  • Zhao, L., & Huchzermeier, A. (2018). Managing supplier financial distress with advance payment discount and purchase order financing. Omega, 88, 77–90.

    Article  Google Scholar 

  • Zink, T., Maker, F., Geyer, R., Amirtharajah, R., & Akella, V. (2014). Comparative life cycle assessment of smartphone reuse: Repurposing vs. refurbishment. The International Journal of Life Cycle Assessment, 19(5), 1099–1109.

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by grants from The Natural Science Foundation of China (Grant No. 71971143); The Research Committee of Hong Kong Polytechnic University (Project Numbers G-UADM; G-UAFS); and the Research Committee of The Hong Kong Polytechnic University under student account code RK2C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix T. S. Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

From Eq. (4), the retailer's expected profit can be written as.

$$ \pi_{r1}^{{{\text{b}}c}} (q,w) = (p - s)\int_{0}^{q} {xf(x)dx + (p - s)\int_{q}^{\infty } {qf(x)dx - (w - s)q} } $$
(A1)

Taking the first-order and second-order partial derivative of q, we have

$$ \begin{gathered} \frac{{\partial \pi_{r1}^{bc} }}{\partial q} = (p - s)\overline{F}(q) - w + s \hfill \\ \frac{{\partial^{2} \pi_{r1}^{bc} }}{{\partial q^{2} }} = \frac{{\partial \{ (p - s)[1 - F(q)] - w + s\} }}{\partial q} = - (p - s)f(q) < 0 \hfill \\ \frac{{\partial^{2} \pi_{r1}^{bc} }}{\partial q\partial s} = 1 - \overline{F}(q) = F(q) > 0 \hfill \\ \end{gathered} $$
(A2)

Then, the first derivative with respect to s follows:

$$ \frac{dq}{{ds}} = \frac{{\partial^{2} \pi_{r1}^{bc} /\partial q\partial s}}{{ - \partial^{2} \pi_{r1}^{bc} /\partial q^{2} }} = \frac{F(q)}{{(p - s)f(q)}} > 0 $$
(A3)

Hence, \(q_{1}^{bc} *\) and \(\pi_{r1}^{{{\text{b}}c}}\) increase with the salvage value.

From the first-order condition: \(\frac{{\partial \pi_{r}^{{{\text{b}}c}} }}{{\partial q_{1}^{bc*} }}{ = }0\), we derive \(q_{1}^{{{\text{b}}c*}} = F^{ - 1} \left( {\frac{p - w}{{p - s}}} \right)\).

Proof of Theorem 2

Under BPOF, based on Eq. (6), the problem of the retailer can be expressed as:

$$ \begin{gathered} \pi_{r1}^{bpof} (q,w) = \left[\int_{0}^{q} {xf(x)dx + \int_{q}^{\infty } {qf(x)dx} } \right](p - s) \hfill \\ \, - q\Bigg[w - s + \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {(\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)\phi (A_{s} )dA_{s}\Bigg]} \hfill \\ \, - \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {(\delta \gamma c_{k} K - \delta \gamma A_{s} + \delta \gamma L_{s} )\phi (A_{s} )dA_{s} } \hfill \\ \end{gathered} $$
(A4)

Taking the first-order and second-order partial derivative of \(\pi_{r1}^{bpof}\), we have

$$ \begin{gathered} \frac{{\partial \pi_{r1}^{bpof} }}{\partial q} = (p - s)\overline{F} (q) - [w - s + \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {(\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)\phi (A_{s} )dA_{s} ]} \hfill \\ \frac{{\partial^{2} \pi_{r1}^{bpof} }}{{\partial q^{2} }} = - (p - s)f(q) < 0 \hfill \\ \frac{{\partial^{2} \pi_{r1}^{bpof} }}{\partial q\partial s} = 1 - \overline{F}(q) = F(q) > 0 \hfill \\ \end{gathered} $$
(A5)

Accordingly,

$$ \frac{dq}{{ds}} = \frac{{\partial^{2} \pi_{r1}^{bpof} /\partial q\partial s}}{{ - \partial^{2} \pi_{r1}^{bpof} /\partial q^{2} }} = \frac{F(q)}{{(p - s)f(q)}} > 0 $$
(A6)

Hence,\(q^{bc} *\) and \(\pi_{r1}^{{{\text{bpof}}}}\) increase with the salvage value.

From the first-order condition:\(\frac{{\partial \pi_{r1}^{bpof} }}{{\partial q^{bpof*} }} = 0\), we have

$$ \begin{gathered} (p - s)\bar{F}(q) = w - s + (\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)[\Phi (\tilde{A}_{S} ) - \Phi (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{A} _{S} )] \hfill \\ \bar{F}(q) = \frac{{w - s + (\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)[\Phi (\tilde{A}_{S} ) - \Phi (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{A} _{S} )]}}{{p - s}} \hfill \\ F(q) = 1 - \frac{{w - s + (\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)[\Phi (\tilde{A}_{S} ) - \Phi (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{A} _{S} )]}}{{p - s}} \hfill \\ \qquad \,\,\,\,\, = \frac{{p - w - (\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)[\Phi (\tilde{A}_{S} ) - \Phi (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{A} _{S} )]}}{{p - s}} \hfill \\ \end{gathered} $$
(A7)

Therefore, \( q_{1}^{{bpof*}} = F^{{ - 1}} \left( {\frac{{p - w - (\delta \lambda w - \delta \gamma w + \delta \gamma c_{p} + \delta \gamma \lambda wr)\left[ {\Phi (\tilde{A}_{S} ) - \Phi (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{A} _{S} )} \right]}}{{p - s}}} \right) \).

Proof of Theorem 3

Under APD, from Eq. (8),

$$ \begin{gathered} \pi_{r1}^{apd} (q,w) = (p - s)\int_{0}^{q} {xf(x)dx + (p - s)\int_{q}^{\infty } {qf(x)dx} } \hfill \\ \, - [(2 - \alpha )(1 - d)w - s]q - (1 - \alpha )[L_{r} - A_{r} ] \hfill \\ \end{gathered} $$
(A8)

We can obtain that

$$ \begin{gathered} \frac{{\partial \pi_{r1}^{apd} }}{\partial q} = (p - s)\overline{F} (q) - (2 - \alpha )(1 - d)w + s \hfill \\ \frac{{\partial^{2} \pi_{r1}^{apd} }}{{\partial q^{2} }} = - (p - s)f(q) < 0 \hfill \\ \frac{{\partial^{2} \pi_{r1}^{apd} }}{\partial q\partial s} = 1 - \overline{F}(q) = F(q) > 0 \hfill \\ \frac{dq}{{ds}} = \frac{F(q)}{{(p - s)f(q)}} > 0 \hfill \\ \end{gathered} $$
(A9)

Hence,\(q^{bc} *\) and \(\pi_{r1}^{{{\text{apd}}}}\) increase with the salvage value.

Proof of Proposition 1

In the case of reorganization, from Eq. (8) and the first-order condition:\(\frac{{\partial \pi_{r1}^{apd} }}{{\partial q^{apd*} }} = 0\), we derive

$$ \begin{gathered} (p - s)\overline{F} (q) = (2 - \alpha )(1 - d)w - s \hfill \\ \overline{F} (q) = \frac{(2 - \alpha )(1 - d)w - s}{{p - s}} \hfill \\ F(q) = \frac{p - s - (2 - \alpha )(1 - d)w + s}{{p - s}} = \frac{p - (2 - \alpha )(1 - d)w}{{p - s}} \hfill \\ q_{1}^{apd*} = F^{ - 1} (\frac{p - (2 - \alpha )(1 - d)w}{{p - s}}) \hfill \\ \end{gathered} $$
(A10)

In the same way, we can also obtain \(q_{1}^{apd*}\) in the case of continuation satisfies the first-order condition:

$$(p - s)\overline{F}\left( {q_{1}^{apd*} } \right) = w\left( {1 - d} \right) - s.$$
(A11)

Hence, \(q_{1}^{apd*} = F^{ - 1} (\frac{p - (1 - d)w}{{p - s}})\).

To sum up, from the first-order condition:\(\frac{{\partial \pi_{r1}^{apd} }}{{\partial q^{apd*} }} = 0\), we have

\(\begin{gathered} q_{1}^{apd*} = F^{ - 1} (\frac{p - (1 - d)w}{{p - s}}){\text{ Continuation}} \hfill \\ q_{1}^{apd*} = F^{ - 1} (\frac{p - (2 - \alpha )(1 - d)w}{{p - s}}){\text{ Reorganization}} \hfill \\ \end{gathered}\).

Proof of Theorem 4

The financing strategy chosen by the retailer will bring a greater expected profit: \(\pi_{r1}^{bpof*} > \pi_{r1}^{apd*}\) iff.

$$ \begin{gathered} p{\rm E}\min (D,q_{1}^{bpof*} ) - wq_{1}^{bpof*} + s(q_{1}^{bpof*} - D)^{ + } \hfill \\ \qquad - \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {\delta \left\{ {\lambda wq_{1}^{bpof*} - \gamma \left[ {(w - c_{p} )q_{1}^{bpof*} - c_{k} K - \lambda wq_{1}^{bpof*} r + A_{s} - L_{s} } \right]} \right\}\phi (A_{s} )dA_{s} } \hfill \\ \quad > p{\rm E}\min (D,q_{1}^{apd*} ) - w(1 - d)q_{1}^{apd*} + s(q_{1}^{apd*} - D)^{ + } - (1 - \alpha )[L_{r} - A_{r} + w(1 - d)q_{1}^{apd*} ]^{ + } \hfill \\ \end{gathered} $$
(A12)

where the threshold value of the retailer's internal assets:

$$ \begin{gathered} \omega_{r1} { = }L_{r} + w\left( {1 - d} \right)q_{1}^{apd*} \hfill \\ \qquad -\,\frac{{p{\rm E}\min (D,q_{1}^{apd*} ) - w(1 - d)q_{1}^{apd*} + s(q_{1}^{apd*} - D)^{ + } - p{\rm E}\min (D,q_{1}^{bpof*} ){ + }wq_{1}^{bpof*} - s(q_{1}^{bpof*} - D)^{ + } }}{1 - \alpha } \hfill \\ \qquad +\, \frac{{\int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {\delta \left\{ {\lambda wq_{1}^{bpof*} - \gamma \left[ {(w - c_{p} )q_{1}^{bpof*} - c_{k} K - \lambda wq_{1}^{bpof*} r + A_{s} - L_{s} } \right]} \right\}\phi (A_{s} )dA_{s} } }}{1 - \alpha } \hfill \\ \quad = L_{r} + w\left( {1 - d} \right)q_{1}^{apd*} \hfill \\ \qquad -\,\frac{{p{\rm E}\min (D,q_{1}^{apd*} ) - w(1 - d)q_{1}^{apd*} - p{\rm E}\min (D,q_{1}^{bpof*} ){ + }wq_{1}^{bpof*} + s[(q_{1}^{apd*} - D)^{ + } - (q_{1}^{bpof*} - D)^{ + } ]}}{1 - \alpha } \hfill \\ \qquad +\,\frac{{\int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {\delta \left\{ {\lambda wq_{1}^{bpof*} - \gamma \left[ {(w - c_{p} )q_{1}^{bpof*} - c_{k} K - \lambda wq_{1}^{bpof*} r + A_{s} - L_{s} } \right]} \right\}\phi (A_{s} )dA_{s} } }}{1 - \alpha } \hfill \\ \end{gathered} $$
(A13)

Since there exist \(s[(q_{1}^{apd*} - D)^{ + } - (q_{1}^{bpof*} - D)^{ + } ]\) and \(q_{1}^{bpof*} > q_{1}^{apd*} > D\), the value of \(\omega_{r1}\) is in direct proportion to the salvage value:

Proof of Theorem 5

From Eq. (12), in the case of reorganization, the retailer’s problem can be rewritten as.

$$ \begin{gathered} \pi_{r}^{df} \left( {q,w} \right) = (p - s)\int_{0}^{q} {xf(x)dx + (p - s)\int_{q}^{\infty } {qf(x)dx} } \hfill \\ \, - [\alpha - \alpha \beta - \alpha d + \alpha d\beta + \beta ]wq^{df} + sq^{df} - \left( {1 - \alpha } \right)(L_{r} - A_{r} ) \hfill \\ \end{gathered} $$
(A14)

\(\omega_{r1} \left( {s > 0} \right){ > }\omega_{r0} \left( {s = 0, \, no \, salvage \, value} \right) > \omega_{r1} \left( {s < 0} \right)\).

The first and second derivatives of \(\pi_{r1}^{bf}\) are

$$ \begin{gathered} \frac{{\partial \pi_{r}^{df} }}{\partial q} = (p - s)\overline{F} (q) - [\alpha - \alpha \beta - \alpha d + \alpha d\beta + \beta ]w + s \hfill \\ \frac{{\partial^{2} \pi_{r1}^{df} }}{{\partial q^{2} }} = - (p - s)f(q) < 0 \hfill \\ \frac{{\partial^{2} \pi_{r1}^{df} }}{\partial q\partial s} = 1 - \overline{F}(q) = F(q) > 0 \hfill \\ \end{gathered} $$
(A15)

Based on the above results, we derive the first-order derivative:

$$ \frac{dq}{{ds}} = \frac{{\partial^{2} \pi_{r1}^{df} /\partial q\partial s}}{{ - \partial^{2} \pi_{r1}^{df} /\partial q^{2} }} = \frac{F(q)}{{(p - s)f(q)}} > 0 $$
(A16)

Hence,\(q^{{\text{df*}}}\) and \(\pi_{r1}^{{{\text{df}}}}\) increase with the salvage value.

What’s more, in the case of continuation,

$$ \pi_{r}^{df} \left( {q,w} \right) = (p - s)\int_{0}^{q} {xf(x)dx + (p - s)\int_{q}^{\infty } {qf(x)dx} } - wq^{df} (1 - d{ + }d\beta ) + sq^{df} $$
(A17)

Then, we can obtain that

$$ \begin{gathered} \frac{{\partial \pi_{r1}^{df} }}{\partial q} = (p - s)\overline{F} (q) - w(1 - d{ + }d\beta ) + s \hfill \\ \frac{{\partial^{2} \pi_{r1}^{df} }}{{\partial q^{2} }} = - (p - s)f(q) < 0 \hfill \\ \frac{{\partial^{2} \pi_{r1}^{df} }}{\partial q\partial s} = 1 - \overline{F}(q) = F(q) > 0 \hfill \\ \frac{dq}{{ds}} = \frac{F(q)}{{(p - s)f(q)}} > 0 \hfill \\ \end{gathered} $$
(A18)

Hence, in both cases of reorganization and continuation,\(q^{{\text{df*}}}\) and \(\pi_{r1}^{{{\text{df}}}}\) increase with the salvage value.

Proof of Proposition 2

In the case of reorganization, from Eq. (12), when \(\frac{{\partial \pi_{r}^{df} }}{\partial q} = 0\), we have

$$ \begin{gathered} {}[\alpha - \alpha \beta - \alpha d + \alpha d\beta + \beta ]w - s = (p - s)\overline{F} (q^{df} ) \hfill \\ \overline{F} (q^{df} ) = \frac{[\alpha - \alpha \beta - \alpha d + \alpha d\beta + \beta ]w - s}{{p - s}} \hfill \\ F(q^{df} ) = \frac{p - [\alpha - \alpha \beta - \alpha d + \alpha d\beta + \beta ]w}{{p - s}} \hfill \\ \end{gathered} $$
(A19)

Thus,\(q^{{df{*}}} = F^{ - 1} (\frac{p - [\alpha - \alpha \beta - \alpha d + \alpha d\beta + \beta ]w}{{p - s}})\) in reorganization.

If the retailer does not have financial difficulties, it follows that:

\((p - s)\overline{F} (q^{df} ){ = }[1 - d + d\beta ]w - s\).

Therefore,\(q^{{df{*}}} = F^{ - 1} (\frac{p - [1 - d + d\beta ]w}{{p - s}})\) in continuation.

Profits without considering salvage value In the deconcentrated benchmark without salvage value,

$$\pi_{{{\text{r0}}}}^{dsc} { = }p{\rm E}\min [D,\min (q,K)] - w\min (q,K).$$
(A20)
$$\pi_{{s{0}}}^{dsc} { = }(w - c_{p} )\min (q,K) - c_{k} K.$$
(A21)
$$\pi_{{s{\text{c0}}}}^{dsc} = p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K) - c_{k} K.$$
(A22)

In base case,

$$ \pi_{r0}^{bc} (q,w) = p{\rm E}\min [D,\min (q,K)] - w\min (q,K) $$
(A23)
$$ \begin{aligned} & \pi_{r0}^{bc} (q,w) = p{\rm E}\min [D,\min (q,K)] - w\min (q,K)\\ & \pi_{s}^{bc} (K,w) = \left\{ {\begin{array}{*{20}l} {(w - c_{p} )\min (q,K) - c_{k} K} \\ {(w - c_{p} )\min (q,K) - c_{k} K - (1 - \alpha )(L_{s} - A_{s} + c_{k} K)} \\ 0 \\ \end{array} } \right.\begin{array}{*{20}c} {{\text{Continuation}}} \\ {\text{ Reorganization}} \\ {{\text{Liquidation}}} \\ \end{array}\end{aligned} $$
(A24)
$$ \pi_{{{\text{sc0}}}}^{bc} = \left\{ \begin{gathered} p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K) - c_{k} K \hfill \\ p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K) - c_{k} K \hfill \\ - (1 - \alpha )(L_{s} - A_{s} + c_{k} K) \hfill \\ \end{gathered} \right.\begin{array}{*{20}c} {{\text{Continuation}}} \\ {\text{ Reorganization}} \\ {} \\ \end{array} $$
(A25)

In BPOF,

$$ \begin{gathered} \pi_{r0}^{bpof} (q,w) = p{\rm E}\min [D,\min (q,K)] - w\min (q,K) - \hfill \\ \, \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {\delta \left\{ {\lambda wq - \gamma \left[ \begin{gathered} (w - c_{p} )\min (q,K) - c_{k} K - \hfill \\ - \lambda wqr + A_{s} - L_{s} \hfill \\ \end{gathered} \right]} \right\}\phi (A_{s} )dA_{s} } \hfill \\ \end{gathered} $$
(A26)
$$ \pi_{s0}^{bpof} (\lambda ,K,w) = \left\{ {\begin{array}{*{20}c} {(w - c_{p} )\min (q,K) - c_{k} K - \lambda wqr} \\ \begin{gathered} (w - c_{p} )\min (q,K) - c_{k} K - \hfill \\ (1 - \alpha )(L_{s} - A_{s} - \lambda wq + c_{k} K) - \lambda wqr \hfill \\ \end{gathered} \\ 0 \\ \end{array} } \right.\begin{array}{*{20}c} {{\text{Continuation}}} \\ {{\text{Reorganization}}} \\ {} \\ {{\text{Liquidation}}} \\ \end{array} $$
(A27)
$$ \pi_{{s{\text{c}}0}}^{bpof} = \left\{ \begin{gathered} p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K) - c_{k} K - \lambda wqr \hfill \\ - \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {\delta \left\{ {\lambda wq - \gamma \left[ \begin{gathered} (w - c_{p} )\min (q,K) - c_{k} K \hfill \\ - \lambda wqr + A_{s} - L_{s} \hfill \\ \end{gathered} \right]} \right\}\phi (A_{s} )dA_{s} {\text{ Continuation}}} \hfill \\ p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K) - c_{k} K - \lambda wqr \hfill \\ - (1 - \alpha )(L_{s} - A_{s} - \lambda wq + c_{k} K) \hfill \\ - \int\limits_{{\underline {A}_{S} }}^{{\tilde{A}_{S} }} {\delta \left\{ {\lambda wq - \gamma \left[ \begin{gathered} (w - c_{p} )\min (q,K) - c_{k} K \hfill \\ - \lambda wqr + A_{s} - L_{s} \hfill \\ \end{gathered} \right]} \right\}\phi (A_{s} )dA_{s} } {\text{ Reorganization}} \hfill \\ \end{gathered} \right. $$
(A28)

In APD,

$$ \pi_{s0}^{apd} (\lambda ,K,w) = \left\{ {\begin{array}{*{20}c} {[w(1 - d) - c_{p} ]\min (q,K) - c_{k} K} \\ \begin{gathered} [w(1 - d) - c_{p} ]\min (q,K) - c_{k} K \hfill \\ - (1 - \alpha )(L_{s} - A_{s} + c_{k} K - w(1 - d)q) \hfill \\ \end{gathered} \\ 0 \\ \end{array} } \right.\begin{array}{*{20}c} {{\text{Continuation}}} \\ {\text{ Reorganization}} \\ {{\text{Liquidation}}} \\ \end{array} $$
(A29)
$$ \begin{gathered} \pi_{r0}^{apd} (q,w) = p{\rm E}\min [D,\min (q,K)] - w(1 - d)\min (q,K) \hfill \\ \, - (1 - \alpha )[L_{r} - A_{r} + w(1 - d)q]^{ + } \hfill \\ \end{gathered} $$
(A30)
$$ \pi_{sc0}^{apd} = \left\{ \begin{gathered} p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K){\text{ Continuation}} \hfill \\ - c_{k} K - (1 - \alpha )[L_{r} - A_{r} + w(1 - d)q]^{ + } \hfill \\ p{\rm E}\min [D,\min (q,K)] - c_{p} \min (q,K){\text{ Reorganization}} \hfill \\ - c_{k} K - (1 - \alpha )[L_{r} - A_{r} ]^{ + } - (1 - \alpha )(L_{s} - A_{s} + c_{k} K) \hfill \\ \end{gathered} \right. $$
(A31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SM., Chan, F.T.S. & Chung, S.H. The influence of positive and negative salvage values on supply chain financing strategies. Ann Oper Res 315, 535–563 (2022). https://doi.org/10.1007/s10479-022-04727-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04727-y

Keywords

Navigation