Skip to main content
Log in

Three-way principal balance analysis: algorithm and interpretation

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Compositional Data Analysis can be useful for unveiling relative variability patterns among variables describing the parts of a phenomenon. Compositions are often represented as orthonormal balances associated with a sequential binary partition (SBP). Principal balances analysis (PBA) is a tool used to find a meaningful SBP by subsequently maximizing explained variability. The exact estimation of PBA is prohibitive for large datasets; therefore, algorithms providing an acceptable approximation are used instead. For compositional data of third-order, such exploratory search must account for third-mode variability. To this end, this work introduces a three-way adaptation of PBA in which estimation is carried out by Tucker3. A study on the composition of academic recruitment fields by Italian macro-region and gender/role is carried out to illustrate the merits of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–160.

    Article  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data. Chapman & Hall Ltd.

    Book  Google Scholar 

  • Aitchison, J. (1994). Principles of compositional data analysis. Multivariate analysis and its applications. In T. W. Anderson & I. Olkin (Eds.), IMS Lectures notes-monograph series (Vol. 24, pp. 73–81). Institute of Mathematical Statistics.

    Google Scholar 

  • Aitchison, J. (2005). A concise guide to compositional data analysis. In 2nd Compositional data analysis workshop. Girona, Spain. Retrieved from http://ima.udg.edu/Activitats/CoDaWork05/.

  • Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(4), 375–392.

    Google Scholar 

  • Bergeron-Boucher, M. P., Simonacci, V., Oeppen, J., & Gallo, M. (2018). Coherent modeling and forecasting of mortality patterns for subpopulations using multiway analysis of compositions: An application to Canadian provinces and territories. North American Actuarial Journal, 22(1), 92–118.

    Article  Google Scholar 

  • Billheimer, D., Guttorp, P., & Fagan, W. F. (2001). Statistical interpretation of species composition. Journal of the American statistical Association, 96(456), 1205–1214.

    Article  Google Scholar 

  • Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young’’ decomposition. Psychometrika, 35(3), 283–319.

    Article  Google Scholar 

  • Cattell, R. B. (1944). Parallel proportional profiles and other principles for determining the choice of factors by rotation. Psychometrika, 9(4), 267–283.

    Article  Google Scholar 

  • Comas-Cufí, M. (2020). coda.base: A basic set of functions for compositional data analysis [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=coda.base (R package version 0.3.1).

  • Di Palma, M. A., & Gallo, M. (2019). External information model in a compositional perspective: Evaluation of Campania adolescents’ preferences in the allocation of leisure-time. Social Indicators Research, 146(1–2), 117–133.

    Article  Google Scholar 

  • Egozcue, J. J., Barceló-Vidal, C., Martín-Fernández, J., Jarauta-Bragulat, E., Díaz-Barrero, J., & Mateu-Figueras, G. (2011). Elements of simplicial linear algebra and geometry. In V. Pawlowsky-Glahn & A. Buccianti (Eds.), Compositional data analysis: Theory and applications. John Wiley & Sons. https://doi.org/10.1002/9781119976462.ch11

    Chapter  Google Scholar 

  • Egozcue, J. J., & Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37(7), 795–828.

    Article  Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.

    Article  Google Scholar 

  • Engle, M. A., Gallo, M., Schroeder, K. T., Geboy, N. J., & Zupancic, J. W. (2014). Three-way compositional analysis of water quality monitoring data. Environmental and Ecological Statistics, 21(3), 565–581.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Templ, M. (2018). Methods for high-dimensional compositional data. In Applied compositional data analysis (pp. 207–225). Springer.

  • Gallo, M. (2013). Log-ratio and parallel factor analysis: an approach to analyze three-way compositional data. In Advanced dynamic modeling of economic and social systems (pp. 209–221). Springer.

  • Gallo, M. (2015). Tucker3 model for compositional data. Communications in Statistics-Theory and Methods, 44(21), 4441–4453.

    Article  Google Scholar 

  • Gallo, M., & Simonacci, V. (2013). A procedure for the three-mode analysis of compositions. Electronic Journal of Applied Statistical Analysis, 6(2), 202–210.

    Google Scholar 

  • Gallo, M., Simonacci, V., & Todorov, V. (2021). A compositional three-way approach for student satisfaction analysis. In P. Filzmoser, K. Hron, J. Martín-Fernández, & J. Palarea-Albaladejo (Eds.), Advances in compositional data analysis: Festschrift in Honour of Vera Pawlowsky-Glahn (pp. 143–162). Springer.

    Chapter  Google Scholar 

  • Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. In UCLA Working papers in phonetics.

  • Hron, K., Engle, M., Filzmoser, P., & Fišerová, E. (2021). Weighted symmetric pivot coordinates for compositional data with geochemical applications. Mathematical Geosciences, 53(4), 655–674.

    Article  Google Scholar 

  • Hron, K., Filzmoser, P., de Caritat, P., Fišerová, E., & Gardlo, A. (2017). Weighted pivot coordinates for compositional data and their application to geochemical mapping. Mathematical Geosciences, 49(6), 797–814.

    Article  Google Scholar 

  • Kiers, H. A. (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics, 14(3), 105–122.

    Article  Google Scholar 

  • Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Article  Google Scholar 

  • Kroonenberg, P. M. (2008). Applied multiway data analysis (Vol. 702). John Wiley & Sons.

    Book  Google Scholar 

  • Martín-Fernández, J., Pawlowsky-Glahn, V., Egozcue, J., & Tolosana-Delgado, R. (2018). Advances in principal balances for compositional data. Mathematical Geosciences, 50(3), 273–298.

    Article  Google Scholar 

  • Mert, M. C., Filzmoser, P., & Hron, K. (2015). Sparse principal balances. Statistical Modelling, 15(2), 159–174.

    Article  Google Scholar 

  • MIUR (2022). Portale dei dati dell’istruzione superiore. Ministero dell’Universitá e della Ricerca. Retrieved from http://ustat.miur.it/.

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment, 15(5), 384–398.

    Article  Google Scholar 

  • Pawlowsky-Glahn, V., Egozcue, J. J., & Lovell, D. (2015a). Tools for compositional data with a total. Statistical Modelling, 15(2), 175–190.

    Article  Google Scholar 

  • Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015b). Modeling and analysis of compositional data. John Wiley & Sons.

    Book  Google Scholar 

  • Pawlowsky-Glahn, V., Egozcue, J. J., Tolosana Delgado, R., et al. (2011). Principal balances. In J. J. Egozcue, R. Tolosana Delgado, & M. Ortego (Eds.), Proceedings of the 4th international workshop on compositional data analysis. CIMNE. Retrieved from http://hdl.handle.net/2117/364253.

  • Quinn, T. P. (2018). Visualizing balances of compositional data: A new alternative to balance dendrograms. F1000Research, 7.

  • R Core Team. (2020). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/.

  • RStudio Team. (2019). RStudio: Integrated development environment for R [Computer software manual]. Boston, MA. Retrieved from http://www.rstudio.com/.

  • Simonacci, V., & Gallo, M. (2017). Statistical tools for student evaluation of academic educational quality. Quality & Quantity, 51(2), 565–579.

    Article  Google Scholar 

  • Simonacci, V., & Gallo, M. (2019). Detecting public social spending patterns in Italy using a three-way relative variation approach. Social Indicators Research, 146(1–2), 205–219.

    Article  Google Scholar 

  • Todorov, V., Di Palma, M. A., & Gallo, M. (2020). rrcov3way: Robust methods for multiway data analysis, applicable also for compositional data [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=rrcov3way (R package version 0.1-18).

  • Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279–311.

    Article  Google Scholar 

  • Van Den Boogaart, K. G., Tolosana-Delgado, R., & Bren, M. (2022). compositions: Compositional data analysis [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=compositions (R package version 2.0-4).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Gallo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonacci, V., Gallo, M. Three-way principal balance analysis: algorithm and interpretation. Ann Oper Res 342, 1429–1443 (2024). https://doi.org/10.1007/s10479-022-04782-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04782-5

Keywords