Abstract
This paper studies one manufacturer’s optimal co-development payment under different power structures in a low-carbon supply chain with one manufacturer, one technology firm, and one retailer. The manufacturer could collaborate with the technology firm on developing low-carbon technology through linear fee or revenue-sharing payment. Our results demonstrate that the manufacturer’s optimal payment depends on the technology firm’s low-carbon level. If the manufacturer collaborates with a relatively low-level (high-level) technology firm, she should choose linear fee (revenue-sharing) payment, regardless of power structures. If the technology firm’s low-carbon level is intermediate, the optimal payment varies with power structures. Meanwhile, the manufacturer’s optimal payment is also beneficial to the environment due to more emission reductions. Besides, no matter under which payment type, as the manufacturer’s market power becomes strong, both the manufacturer’s and the technology firm’s profits increase.





Similar content being viewed by others
Notes
References
Beat, H. (2010). Allowance price drivers in the first phase of the EU ETS. Journal of Environmental Economics and Management, 59(1), 43–56.
Chen, T., Klastorin, T., & Wagner, R. M. (2015). Incentive contracts in serial stochastic projects. Manufacturing & Service Operations Management, 17(3), 290–301.
Chen, X., & Wang, X. (2016). Effects of carbon emission reduction policies on transporation mode selections with stochastic demand. Transportation Research Part E: Logistics and Transportation Review, 90, 196–205.
Chen, X., Wang, X., & Zhou, M. (2019). Firms’ green R &D cooperation behaviour in a supply chain: Technological spillover, power and coordination. International Journal of Production Economics, 218, 118–134.
Chen, X., Yang, H., Wang, X., & Choi, T. M. (2020). Optimal carbon tax design for achieving low carbon supply chains. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03621-9.
Crama, P., De Reyck, B., & Degraeve, Z. (2008). Milestone payments or royalties? Contract design for R &D licensing. Operations Research, 56(6), 1539–1552.
Dai, R., Zhang, J., & Tang, W. (2017). Cartelization or cost-sharing? Comparison of cooperation modes in a green supply chain. Journal of Cleaner Production, 156, 159–173.
Dechenaux, E., Thursby, M., & Thursby, J. (2009). Shirking, sharing risk and shelving: The role of university license contracts. International Journal of Industrial Organization, 27, 80–91.
Dong, C., Liu, Q., & Shen, B. (2019). To be or not to be green? Strategic investment for green product development in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 131, 193–227.
Dong, G., Liang, L., Wei, L., Xie, J., & Yang, G. (2021). Optimization model of trade credit and asset-based securitization financing in carbon emission reduction supply chain. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04011-5.
Du, S., Qian, J., Liu, T., & Hu, L. (2020). Emission allowance allocation mechanism design: A low-carbon operations perspective. Annals of Operations Research, 291, 247–280.
Du, S., Zhu, Y., Zhu, Y., & Tang, W. (2020). Allocation policy considering firm’s time-varying emission reduction in a cap-and-trade system. Annals of Operations Research, 290, 543–565.
Fu, Y., Chen, Z., Liu, Z., & Yang, S. (2020). A comparison of milestone contract and royalty contract under critical value criterion in R &D alliance. Soft Computing, 24, 2447–2462.
Ge, Z., Hu, Q., & Xia, Y. (2014). Firms’ R &D cooperation behavior in a supply chain. Production and Operations Management, 23(4), 599–609.
Ghosh, D., & Shah, J. (2015). Supply chain analysis under green sensitive consumer demand and cost sharing contract. International Journal of Production Economics, 164, 319–329.
Ji, T., Xu, X., Yan, X., & Yu, Y. (2020). The production decisions and cap setting with wholesale price and revenue sharing contracts under cap-and-trade regulation. International Journal of Production Research, 58(1), 128–147.
Li, J., & Lai, K. (2021). The abatement contract for low-carbon demand in supply chain with single and multiple abatement mechanism under asymmetric information. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04152-7.
Li, T., Zhang, R., Zhao, S., & Liu, B. (2019). Low carbon strategy analysis under revenue-sharing and cost-sharing contracts. Journal of Cleaner Production, 212, 1462–1477.
Li, X. (2018). Competing retailers’ environmental investment: An analysis under different power structures. Energies, 11(2719), 1–18.
Liu, J., & Ke, H. (2020). Firms’ pricing strategies under different decision sequences in dual-format online retailing. Soft Computing, 24, 7811–7826.
Liu, J., & Ke, H. (2021). Firms’ preferences for retailing formats considering one manufacturer’s emission reduction investment. International Journal of Production Research, 59(10), 3062–3083.
Liu, K., & Song, H. (2017). Contract and incentive mechanism in low-carbon R &D cooperation. Supply Chain Management: An International Journal, 22(3), 270–283.
Luo, Z., Chen, X., Chen, J., & Wang, X. (2017). Optimal pricing policies for differentiated brands under different supply chain power structures. European Journal of Operational Research, 259, 437–451.
Luo, Z., Chen, X., & Kai, M. (2018). The effect of customer value and power structure on retail supply chain product choice and pricing decisions. Omega, 77, 115–126.
Luo, Z., Chen, X., & Wang, X. (2016). The role of co-opetition in low carbon manufacturing. European Journal of Operational Research, 253(2), 392–403.
Meng, X., Yao, Z., Nie, J., Zhao, Y., & Li, Z. (2018). Low-carbon product selection with carbon tax and competition: Effects of the power structure. International Journal of Production Economics, 200, 224–230.
Rong, L., & Xu, M. (2020). Impact of revenue-sharing contracts on green supply chain in manufacturing industry. International Journal of Sustainable Engineering, 13(4), 316–326.
Tang, R., & Yang, L. (2020). Impacts of financing mechanism and power structure on supply chains under cap-and-trade regulation. Transportation Research Part E: Logistics and Transportation Review, 139, 101957.
Wang, J., Yan, Y., Du, H., & Zhao, R. (2020). The optimal sales format for green products considering downstream investment. International Journal of Production Research, 58(4), 1107–1126.
Wang, Y., & Hou, G. (2020). How sticky information and members attitudes affects the co-innovate carbon emission reduction? Journal of Cleaner Production, 266, 121996.
Xia, L., Bai, Y., Ghose, S., & Qin, J. (2021). Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03838-8.
Xia, L., Guo, T., Qin, X., Juanjuan, Y., & Zhu, N. (2018). Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Annals of Operations Research, 268, 149–175.
Xia, L., Kong, Q., Li, Y., & Qin, J. (2021). Effect of equity holding on a supply chain’s pricing and emission reduction decisions considering information sharing. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03930-7.
Xing, G., Xia, B., & Guo, J. (2022). Contract choice for upstream innovation in a finance-constrained supply chain. International Transactions in Operational Research, 29, 1897–1914.
Xu, X., Xu, X., & He, P. (2016). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112(20), 4093–4106.
Yan, Y., Zhao, R., & Lan, Y. (2019). Moving sequence preference in coopetition outsourcing supply chain: Consensus or conflict. International Journal of Production Economics, 208, 221–240.
Yang, L., Ji, J., Wang, M., & Wang, Z. (2018). The manufacturer’s joint decisions of channel selections and carbon emission reductions under the cap-and-trade regulation. Journal of Cleaner Production, 193, 506–523.
Yang, L., Qin, Z., & Ji, J. (2017). Pricing and carbon emission reduction decisions in supply chains with vertical and horizontal cooperation. International Journal of Production Economics, 191, 286–297.
Yu, M., & Cao, E. (2020). Information sharing format and carbon emission abatement in a supply chain with competition. International Journal of Production Research, 58(22), 6775–6790.
Yu, X., Lan, Y., & Zhao, R. (2018). Cooperation royalty contract design in research and development alliances: Help vs. knowledge-sharing. European Journal of Operational Research, 268(2), 740–754.
Yu, X., Lan, Y., & Zhao, R. (2021). Strategic green technology innovation in a two-stage alliance: Vertical collaboration or co-development? Omega, 98, Article ID: 102116.
Zhang, S., Wang, C., Yu, C., & Ren, Y. (2019). Governmental cap regulation and manufacturer’s low carbon strategy in a supply chain with different power structures. Computers & Industrial Engineering, 134, 27–36.
Zhang, Y. J., Sun, Y. F., & Huo, B. F. (2021). The optimal product pricing and carbon emissions reduction profit allocation of CET-covered enterprises in the cooperative supply chain. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04162-5.
Funding
This work was partly supported by the National Natural Science Foundation of China (No. 41971252) and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No potential conflict of interest was reported by the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendices
A. Linear fee payment
When the manufacture collaborates with the technology firm through linear fee payment, the three members’ profit functions are as follows:
1.1 A-1 Proof of MS game
Here, we use backward induction to solve the problem. In stage 3, the retailer decides the retail price after the manufacturer sets the wholesale price. From Eq. (A.3), we obtain \(\frac{\partial {\varPi ^L_t}^2}{\partial p^2}=-2<0\), so \(\varPi _t^L(p)\) is concave in p. Let \(\frac{\partial \varPi _t^L}{\partial p}=a+r \left( s e_h+e_h+e_m\right) -2 p+w=0\), we obtain \(p^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m+w\right) \).
Replace \(p^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial w^2}=-1 <0\), so \(\varPi _m^L(f,e_m,w)\) is a concave function of w. Let \(\frac{\partial \varPi ^L _m}{\partial w}=\frac{1}{2} \left( a+r (s+1) e_h+r e_m-2 w\right) =0\), we have \(w^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).
Replace \(w^*\) and \(p^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial e_m^2}=\frac{1}{4} \left( r^2-4\right) <0\), so \(\varPi _m^L(e_m,w)\) is concave in \(e_m\). From Eq. (A.2), we obtain \(\frac{\partial {\varPi ^L_h}^2}{\partial e_h^2}=-\frac{1}{k_h}<0\), so \(\varPi ^L _h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^L _h}{\partial e_h}=f-\frac{e_h}{k_h}=0\) and \(\frac{\partial \varPi ^L _m}{\partial e_m}=\frac{1}{8} \left( 2 r \left( a+r (s+1) e_h\right) +2 \left( r^2-4\right) e_m\right) =0\), we obtain \(e_m^{*}=\frac{r \left( a+f r (s+1) k_h\right) }{4-r^2}\) and \(e_h^{*}=f k_h\).
Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi _m^L(f,e_m,w)\), we have \(\varPi _m^L(f)=\frac{a^2+f k_h \left( 2 \left( a r (s+1)+f \left( r^2-4\right) \right) +f r^2 (s+1)^2 k_h\right) }{2 \left( 4-r^2\right) }\). Then we get \(\frac{\partial \varPi _m^2}{\partial f^2}=\frac{k_h \left( r^2 (s+1)^2 k_h+2 \left( r^2-4\right) \right) }{4-r^2}\). When \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\frac{\partial \varPi _m^2}{\partial f^2}<0\) holds, and thus \(\varPi _m^L(f)\) is concave in f. Let \(\frac{\partial \varPi _m}{\partial f}=\frac{k_h \left( a r (s+1)+f r^2 (s+1)^2 k_h+2 f \left( r^2-4\right) \right) }{4-r^2}=0\), we obtain \(f^{LM}=\frac{a r (s+1)}{2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h}\). Replace \(f^{LM}\) with f in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.
1.2 A-2 Proof of VN game
In the VN game, the manufacturer and the retailer decide the wholesale and retail prices simultaneously in the third stage. Here, we assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eqs. (A.1) and (A.3), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial w^2}=-2<0\) and \(\frac{\partial {\varPi ^L_t}^2}{\partial m_1^2}=-2<0\), so \(\varPi _m^L(f,e_m,w)\) is concave in w, and \(\varPi _t^L(p)\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^L_m}{\partial w}=a+r \left( s e_h+e_h+e_m\right) -m_1-2 w=0\) and \(\frac{\partial \varPi ^L_t}{\partial m_1}=a+r \left( s e_h+e_h+e_m\right) -2 m_1-w=0\), we obtain \(w^*=\frac{1}{3} \left( a+r s e_h+r e_h+r e_m\right) \) and \(m^*_1=\frac{a}{3}+\frac{1}{3} r s e_h+\frac{r e_h}{3}+\frac{r e_m}{3}\).
Then, we back to the second stage and solve the manufacturer’s and the technology firm’s emission reduction decisions. Replace \(w^*\) and \(m_1^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial e_m^2}=\frac{1}{9} \left( 2 r^2-9\right) <0\) and \(\frac{\partial {\varPi ^L _h}^2}{\partial e_h^2}=-\frac{1}{k_h}<0\), so \(\varPi ^L_m(f,e_m,w)\) is concave in \(e_m\), and \(\varPi ^L_h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^L_m}{\partial e_m}=\frac{1}{18} \left( 4 r \left( a+r (s+1) e_h\right) +2 \left( 2 r^2-9\right) e_m\right) =0\) and \(\frac{\partial \varPi ^L_h}{\partial e_h}=f-\frac{e_h}{k_h}=0\), we obtain \(e_m^{*}=\frac{2 \left( a r+f r^2 s k_h+f r^2 k_h\right) }{9-2 r^2}\) and \(e_h^{*}=f k_h\).
Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^L_m\), we have \(\varPi ^L_m(f)=\frac{a^2+f k_h \left( 2 a r (s+1)+f r^2 (s+1)^2 k_h+f \left( 2 r^2-9\right) \right) }{9-2 r^2}\). Then we get \(\frac{\partial \varPi ^L_m}{\partial f}=\frac{2 k_h \left( a r (s+1)+f r^2 (s+1)^2 k_h+f \left( 2 r^2-9\right) \right) }{9-2 r^2}\) and \(\frac{\partial {\varPi ^L_m}^2}{\partial f^2}=\frac{2 k_h \left( r^2 (s+1)^2 k_h+2 r^2-9\right) }{9-2 r^2}\). When \(k_h<\frac{9-2 r^2}{r^2 (s+1)^2}\), \(\frac{\partial {\varPi ^L_m}^2}{\partial f^2}<0\), and thus \(\varPi ^L_m(f)\) is concave in f. Let \(\frac{\partial \varPi ^L_m}{\partial f}=0\), we obtain \(f^{LN}=\frac{a r (s+1)}{9-2 r^2-r^2(s+1)^2 k_h}\). Replace \(f^{LN}\) with f in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.
1.3 A-3 Proof of RS game
In the RS game, the manufacturer decides the wholesale prices after the retailer sets the retail price in the third stage. Here, we still assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eq. (A.1), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial w^2}=-2<0\), so \(\varPi _m^L(f,e_m,w)\) is concave in w. Let \(\frac{\partial \varPi ^L_m}{\partial w}=a+r \left( s e_h+e_h+e_m\right) -m_1-2 w=0\), we obtain \(w^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m-m_1\right) \). Replace \(w^*\) in Eq. (A.3), we obtain \(\frac{\partial {\varPi ^L_t}^2}{\partial m_1^2}=-1 <0\), so \(\varPi ^L_t\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^L_t}{\partial m_1}=\frac{1}{2} \left( a+r (s+1) e_h+r e_m-m_1\right) -\frac{m_1}{2}=0\), we obtain \(m^*_1=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).
Then, we back to the second stage and solve the manufacturer’s and the technology firm’s emission reduction decisions. Replace \(w^*\) and \(m1^*\) in \(\varPi _m^L(f,e_m,w)\), we obtain \(\frac{\partial {\varPi ^L_m}^2}{\partial e_m^2}=\frac{1}{8} \left( r^2-8\right) <0\) and \(\frac{\partial {\varPi ^L _h}^2}{\partial e_h^2}=-\frac{1}{k_h}<0\), so \(\varPi ^L _m(f,e_m,w)\) is concave in \(e_m\), and \(\varPi ^L_h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^L_m}{\partial e_m}=\frac{1}{16} \left( 2 r \left( a+r (s+1) e_h\right) +2 \left( r^2-8\right) e_m\right) =0\) and \(\frac{\partial \varPi ^L_h}{\partial e_h}=f-\frac{e_h}{k_h}=0\), we obtain \(e_m^{*}=\frac{r \left( a+f r (s+1) k_h\right) }{8-r^2}\) and \(e_h^{*}=f k_h\).
Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^L _m\), we obtain \(\varPi ^L _m(f)=\frac{a^2+f k_h \left( 2 \left( a r (s+1)+f \left( r^2-8\right) \right) +f r^2 (s+1)^2 k_h\right) }{2 \left( 8-r^2\right) }\). Then we can get \(\frac{\partial \varPi _m}{\partial f}=\frac{k_h \left( a r (s+1)+f r^2 (s+1)^2 k_h+2 f \left( r^2-8\right) \right) }{8-r^2}\) and \(\frac{\partial {\varPi ^L _m}^2}{\partial f^2}=\frac{k_h \left( r^2 (s+1)^2 k_h+2 \left( r^2-8\right) \right) }{8-r^2}\). When \(k_h<\frac{2 \left( 8-r^2\right) }{r^2 (s+1)^2}\), \(\frac{\partial \varPi _m^2}{\partial f^2}<0\), and thus \(\varPi ^L _m\) is concave in f. Let \(\frac{\partial \varPi ^L_m}{\partial f}=0\), we obtain \(f^{LR}=\frac{a r (s+1)}{2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h}\). Replace \(f^{LR}\) with f in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.
1.4 A-4 Proof of Lemma 1
We derive the effect of power structures on decisions in this lemma. Note that we compare these decisions when the three power structures all exist, namely, \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\).
-
(a)
We first compare the optimal linear fee f under different power structures. Taking the difference between \(f^{LM}\) and \(f^{LN}\), we have \(f^{LM}-f^{LN}=\frac{a r (s+1)}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\).
Taking the difference between \(f^{LR}\) and \(f^{LN}\), we have \(f^{LN}-f^{LR}=\frac{7 a r (s+1)}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\). Thus \(f^{LM}>f^{LN}>f^{LR}\).
-
(b)
We then compare the emission reductions under different power structures. Taking the difference between \(e^{LM}_m\) and \(e^{LN}_m\), we have \(e^{LM}_m-e^{LN}_m=\frac{2 a r}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\).
Taking the difference between \(e^{LN}_m\) and \(e^{LR}_m\), we have \(e_m^{LN}-e_m^{LR}=\frac{14 a r}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\). Thus \(e^{LM}_m>e^{LN}_m>e_m^{LR}\).
Taking the difference between \(e^{LM}_h\) and \(e^{LN}_h\), we have \(e^{LM}_h-e^{LN}_h=\frac{a r (s+1) k_h}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\).
Taking the difference between \(e^{LN}_h\) and \(e^{LR}_h\), we have \(e_h^{LN}-e_h^{LR}=\frac{7 a r (s+1) k_h}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0\). Thus \(e^{LM}_h>e^{LN}_h>e_h^{LR}\).
1.5 A-5 Proof of Proposition 1
-
(a)
Taking the difference between \(\varPi _m^{LM}\) and \(\varPi _m^{LN}\), we obtain
$$\begin{aligned} \varPi _m^{LM}-\varPi _m^{LN}=\frac{a^2}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }>0. \end{aligned}$$Taking the difference between \(\varPi _m^{LN}\) and \(\varPi _m^{LR}\), we obtain
$$\begin{aligned} \varPi _m^{LN}-\varPi _m^{LR}=\frac{7 a^2}{\left( 9-2 r^2-r^2(s+1)^2 k_h\right) \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) }>0. \end{aligned}$$Thus \(\varPi _m^{LM}>\varPi _m^{LN}>\varPi _m^{LR}\).
Taking the difference between \(\varPi _h^{LM}\) and \(\varPi _h^{LN}\), we obtain
$$\begin{aligned} \varPi _h^{LM}-\varPi _h^{LN}=\frac{a^2 r^2 (s+1)^2 k_h \left( 17-2 r^2 (s+1)^2 k_h-4 r^2\right) }{2 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2 \left( 2 \left( r^2+4\right) -r^2 (s+1)^2 k_h\right) {}^2}. \end{aligned}$$When \(\varPi _h^{LM}-\varPi _h^{LN}>0\), we have \(k_h<\frac{17-4 r^2}{2 r^2 (s+1)^2}\) and \(\frac{17-4 r^2}{2 r^2 (s+1)^2}>\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\). Hence, when \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\varPi _h^{LM}>\varPi _h^{LN}\) holds.
Taking the difference between \(\varPi _h^{LN}\) and \(\varPi _h^{LR}\), we obtain
$$\begin{aligned} \varPi _h^{LN}-\varPi _h^{LR}=\frac{7 a^2 r^2 (s+1)^2 k_h \left( 2 r^2 (s+1)^2 k_h+4 r^2-25\right) }{2 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2 \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}. \end{aligned}$$When \(\varPi _h^{LN}-\varPi _h^{LR}>0\), we have \(k_h<\frac{25-4 r^2}{2 r^2 (s+1)^2}\) and \(\frac{25-4 r^2}{2 r^2 (s+1)^2}>\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\). Hence, when \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\varPi _h^{LN}>\varPi _h^{LR}\) holds. From what has been discussed above, we obtain \(\varPi _h^{LM}>\varPi _h^{LN}>\varPi _h^{LR}\).
-
(b)
Taking the ratio of \(\varPi _t^{LM}\) to \(\varPi _t^{LN}\), we obtain \(\varPi _t^{LM}/\varPi _t^{LN}=\frac{4 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2}{9 \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}\).
Set \(\varPi _t^{LM}/\varPi _t^{LN}>1\), we obtain \(4 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2-9 \left( 2 \left( 4-r^2\right) \right. \left. -r^2 (s+1)^2 k_h\right) {}^2>0\). Then we derive \(\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}<k_h<\frac{2 \left( 21-5 r^2\right) }{5 r^2 (s+1)^2}\). According to the constraint \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), we can get \(\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}>\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}\) and \(\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}<\frac{2 \left( 21-5 r^2\right) }{5 r^2 (s+1)^2}\). Thus when \(\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), we obtain \(\varPi _t^{LM}>\varPi _t^{LN}\); when \(1<k_h<\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}\), we obtain \(\varPi _t^{LM}<\varPi _t^{LN}\).
Taking the ratio of \(\varPi _t^{LR}\) to \(\varPi _t^{LN}\), we obtain \(\varPi _t^{LR}/\varPi _t^{LN}=\frac{32 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2}{9 \left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}\).
Set \(\varPi _t^{LR}/\varPi _t^{LN}>1\), we obtain \(32 \left( 9-2 r^2-r^2(s+1)^2 k_h\right) {}^2-9 \left( 2 \left( 8-r^2\right) \right. \left. -r^2 (s+1)^2 k_h\right) {}^2>0\).
Then we derive \(k_h<\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\) or \(k_h>\frac{2 \left( 72-23 r^2+42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\). In addition, \(\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\) and \(\frac{2 \left( 72-23 r^2+42 \sqrt{2}\right) }{23 r^2 (s+1)^2}>\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\). Hence, when \(k_h<\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\), we obtain \(\varPi _t^{LR}>\varPi _t^{LN}\); when \(\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), we obtain \(\varPi _t^{LR}<\varPi _t^{LN}\).
Taking the ratio of \(\varPi _t^{LM}\) to \(\varPi _t^{LR}\), we obtain \(\varPi _t^{LM}/\varPi _t^{LR}=\frac{\left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}{8 \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}\).
Set \(\varPi _t^{LM}/\varPi _t^{LR}>1\), we obtain \(\left( 2 \left( 8-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2-8 \left( 2 \left( 4-r^2\right) \right. \left. -r^2 (s+1)^2 k_h\right) {}^2>0\). Then we derive \(\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}<k_h<\frac{2 \left( 8 \left( 3+\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}\). In addition, \(\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}-\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}=-\frac{8 \left( 1+2 \sqrt{2}\right) }{7 r^2 (s+1)^2}<0\) and \(\frac{2 \left( 8 \left( 3+\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}-\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}=\frac{8 \left( 2 \sqrt{2}-1\right) }{7 r^2 (s+1)^2}>0\). Thus when \(\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), \(\varPi _t^{LM}>\varPi _t^{LR}\); when \(1<k_h<\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}\), \(\varPi _t^{LM}<\varPi _t^{LR}\).
Therefore, if \(k_h<k^{L}_1=\frac{2 \left( 72-23 r^2-42 \sqrt{2}\right) }{23 r^2 (s+1)^2}\), we have \(\varPi _t^{LR}>\varPi _t^{LN}>\varPi _t^{LM}\); if \(k^{L}_1<k_h<k^{L}_2=\frac{2 \left( 8 \left( 3-\sqrt{2}\right) -7 r^2\right) }{7 r^2 (s+1)^2}\), then \(\varPi _t^{LN}>\varPi _t^{LR}>\varPi _t^{LM}\); if \(k^{L}_2<k_h<k^{L}_3=\frac{2 \left( 3-r^2\right) }{r^2 (s+1)^2}\), then \(\varPi _t^{LN}>\varPi _t^{LM}>\varPi _t^{LR}\); if \(k^{L}_3<k_h<\frac{2 \left( 4-r^2\right) }{r^2 (s+1)^2}\), then \(\varPi _t^{LM}>\varPi _t^{LN}>\varPi _t^{LR}\).
B. Revenue-sharing payment
When the manufacture collaborates with the technology firm through revenue-sharing payment, the three members’ profit functions are as follows:
1.1 B-1 Proof of MS game
The decision sequence is similar to that of “Appendix A-1”. In stage 4, the retailer decides the retail price after the manufacturer sets the wholesale price in stage 3. From Eq. (B.3), we obtain \(\frac{\partial {\varPi ^S_t}^2}{\partial p^2}=-2<0\), so \(\varPi _t^S(p)\) is concave in p. Let \(\frac{\partial \varPi _t^S}{\partial p}=a+r \left( s e_h+e_h+e_m\right) -2 p+w=0\), we obtain \(p^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m+w\right) \). Replace \(p^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial w^2}=-(1-\phi ) <0\), so \(\varPi _m^S(\phi ,e_m,w)\) is a concave function of w. Let \(\frac{\partial \varPi ^S_m}{\partial w}=-\frac{1}{2} (\phi -1) \left( a+r (s+1) e_h+r e_m-2 w\right) =0\), we have \(w^*=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).
Replace \(w^*\) and \(p^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial e_m^2}=\frac{1}{4} \left( r^2 (1-\phi )-4\right) <0\), so \(\varPi _m^S(\phi ,e_m,w)\) is concave in \(e_m\). From Eq. (B.2), we obtain \(\frac{\partial {\varPi ^S_h}^2}{\partial e_h^2}=\frac{1}{8} \left( 2 r^2 (s+1)^2 \phi -\frac{8}{k_h}\right) \). Set \(\frac{1}{8} \left( 2 r^2 (s+1)^2 \phi -\frac{8}{k_h}\right) <0\), we obtain \(\phi <\frac{4}{r^2 (s+1)^2 k_h}\), so \(\varPi ^S_h(e_h)\) is concave in \(e_h\). Let \(\frac{\partial \varPi ^S _m}{\partial e_m}=\frac{1}{2} \left( -\frac{1}{2} r (\phi -1) \left( a+r (s+1) e_h+r e_m\right) -2 e_m\right) =0\) and \(\frac{\partial \varPi ^S _h}{\partial e_h}=\frac{1}{8} \left( 2 r (s+1) \phi \left( a+r (s+1) e_h+r e_m\right) -\frac{8 e_h}{k_h}\right) =0\), we obtain \(e_m^{*}=\frac{a r (1-\phi )}{4-r^2 (s+1)^2 \phi k_h-r^2(1-\phi )}\) and \(e_h^{*}=\frac{a r (s+1) \phi k_h}{4-r^2 (s+1)^2 \phi k_h-r^2(1-\phi )}\).
Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi _m^S\), we obtain \(\varPi _m^S(\phi )=\frac{a^2 (1-\phi ) \left( 4-r^2 (1-\phi )\right) }{2\left( 4-r^2 (s+1)^2 \phi k_h+r^2(1-\phi )\right) {}^2}\). Then we derive \(\frac{\partial \varPi ^S_m}{\partial \phi }=\frac{a^2 \left( 8-r^2 (s+1)^2 k_h \left( r^2 (\phi -1)-2 \phi +4\right) +2 r^2 (\phi -1)\right) }{\left( r^2 (s+1)^2 \phi k_h-r^2(\phi -1)-4\right) {}^3}\), \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}\)\( =\frac{a^2 r^2 \left( (s+1)^2 k_h \left( r^2 (s+1)^2 k_h \left( r^2 (2 \phi -3)-4 (\phi -3)\right) -2 r^4 (\phi -1)-32\right) +4 \left( r^2 (\phi -1)+4\right) \right) }{\left( -r^2 (s+1)^2 \phi k_h+r^2 (\phi -1)+4\right) {}^4}\).
When \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}<0\), we derive \(\phi >\phi _1=\frac{(s+1)^2 k_h \left( 3 \left( r^2-4\right) r^2 (s+1)^2 k_h-2 r^4+32\right) +4 \left( r^2-4\right) }{2 r^2 \left( (s+1)^2 k_h-1\right) \left( \left( r^2-2\right) (s+1)^2 k_h-2\right) }\). Because \(0<\phi <1\), we restrict \(\phi _1<1\) to ensure the second derivative is negative. From this, we obtain \(\frac{4}{\left( 8-r^2\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Set \(\frac{\partial \varPi ^S_m}{\partial \phi }=0\), we obtain \(\phi ^{SM}=\frac{\left( 4-r^2\right) \left( r^2 (s+1)^2 k_h-2\right) }{r^2 \left( \left( 2-r^2\right) (s+1)^2 k_h+2\right) }\). To ensure the optimal solution exists, we restrict \(\phi ^{SM}<\frac{4}{r^2 (s+1)^2 k_h}\), and then derive \(\frac{2}{\left( r^2-4\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Then, we restrict \(\phi ^{SM}<1\) and derive \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Here, \(\frac{2}{r^2 (s+1)^2}-\frac{4}{\left( 8-r^2\right) (s+1)^2}=\frac{2 \left( 8-3 r^2\right) }{r^2 \left( 8-r^2\right) (s+1)^2}>0\). Thus, from what has been discussed above, the constraint condition is \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Replace \(\phi ^{SM}\) with \(\phi \) in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.
1.2 B-2 Proof of VN game
In the VN game, the manufacturer and the retailer decide the wholesale and retail prices simultaneously in the third stage. Here, we also assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eqs. (B.1) and (B.3), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial w^2}=2 (\phi -1)<0\) and \(\frac{\partial {\varPi ^S_t}^2}{\partial m_1^2}=-2<0\), so \(\varPi _m^S(\phi ,e_m,w)\) is concave in w, and \(\varPi _t^S(p)\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^S_m}{\partial w}=(1-\phi ) \left( a+r (s+1) e_h+r e_m-m_1-2 w\right) =0\) and \(\frac{\partial \varPi ^S_t}{\partial m_1}=a+r \left( s e_h+e_h+e_m\right) -2 m_1-w=0\), we obtain \(w^*=\frac{1}{3} \left( a+r s e_h+r e_h+r e_m\right) \) and \(m^*_1=\frac{1}{3} \left( a+r s e_h+r e_h+r e_m\right) \).
Replace \(w^*\) and \(m_1^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial e_m^2}=\frac{2}{9} r^2 (1-\phi )-1<0\) and \(\frac{\partial {\varPi ^S _h}^2}{\partial e_h^2}=\frac{2}{9} r^2 (s+1)^2 \phi -\frac{1}{k_h}\). Thus \(\varPi ^S _m(\phi ,e_m,w)\) is concave in \(e_m\). Set \(\frac{2}{9} r^2 (s+1)^2 \phi -\frac{1}{k_h}<0\), we have \(\phi <\frac{9}{2 r^2 (s+1)^2 k_h}\), and thus \(\varPi ^S _h(e_h)\) is concave in \(e_h\) under this constraint. Let \(\frac{\partial \varPi ^S_m}{\partial e_m}=-\frac{2}{9} r (\phi -1) \left( a+r (s+1) e_h+r e_m\right) -e_m\) and \(\frac{\partial \varPi ^S_h}{\partial e_h}=\frac{2}{9} r (s+1) \phi \left( a+r (s+1) e_h+r e_m\right) -\frac{e_h}{k_h}=0\), we obtain \(e_m^{*}=\frac{2 a r (\phi -1)}{2 r^2 (s+1)^2 \phi k_h-2 r^2 (\phi -1)-9}\) and \(e_h^{*}=-\frac{2 a r (s+1) \phi k_h}{2 r^2 (s+1)^2 \phi k_h-2 r^2 (\phi -1)-9}\).
Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^S_m\), we obtain \(\varPi ^S_m=-\frac{a^2 (\phi -1) \left( 2 r^2 (\phi -1)+9\right) }{\left( -2 r^2 (s+1)^2 \phi k_h+2 r^2 (\phi -1)+9\right) {}^2}\). Then we derive \(\frac{\partial \varPi ^S_m}{\partial \phi }=\frac{a^2 \left( 9 \left( 2 r^2 (\phi -1)+9\right) -2 r^2 (s+1)^2 k_h \left( 4 r^2 (\phi -1)-9 (\phi -2)\right) \right) }{\left( 2 r^2 (s+1)^2 \phi k_h-2 r^2 (\phi -1)-9\right) {}^3}\), \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}\)\(=\frac{2 a^2 r^2 \left( 4 (s+1)^2 k_h \left( r^2 (s+1)^2 k_h \left( r^2 (4 \phi -6)-9 (\phi -3)\right) -4 r^4 (\phi -1)-81\right) +18 \left( 2 r^2 (\phi -1)+9\right) \right) }{\left( -2 r^2 (s+1)^2 \phi k_h+2 r^2 (\phi -1)+9\right) {}^4}\).
Set \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}<0\), we have \(\phi >\phi _2=\frac{2 (s+1)^2 k_h \left( 3 \left( 2 r^2-9\right) r^2 (s+1)^2 k_h-4 r^4+81\right) +9 \left( 2 r^2-9\right) }{2 r^2 \left( (s+1)^2 k_h-1\right) \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) }\). Because \(0<\phi <1\), we restrict \(\phi _2<1\) and derive that \(\frac{9}{2 \left( 9-r^2\right) (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\). Let \(\frac{\partial \varPi ^S_m}{\partial \phi }=0\), we obtain \(\phi ^{SN}=\frac{\left( 9-2 r^2\right) \left( 4 r^2 (s+1)^2 k_h-9\right) }{2 r^2 \left( \left( 9-4 r^2\right) (s+1)^2 k_h+9\right) }\). To ensure the optimal solution exists, we restrict \(0<\phi ^{SN}<1\) and derive \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\); then we restrict \(\phi ^{SN}<\frac{9}{2 r^2 (s+1)^2 k_h}\) and derive \(\frac{9}{2 \left( 2 r^2-9\right) (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\). Thus, from what has been discussed above, the constraint condition is \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\). Replace \(\phi ^{SN}\) with \(\phi \) in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.
1.3 B-3 Proof of RS game
Similarly, we still assume \(p=m_1+w\). Replace \(p=m_1+w\) in Eq. (B.1), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial w^2}=-2(1-\phi ) <0\), so \(\varPi _m^S(\phi ,e_m,w)\) is concave in w. Let \(\frac{\partial \varPi ^S_m}{\partial w}=(1-\phi ) \left( a+r (s+1) e_h+r e_m-m_1-2 w\right) =0\), we obtain \(w^*=(1-\phi ) \left( a+r (s+1) e_h+r e_m \right. \left. -m_1-2 w\right) \). Replace \(w^*\) in Eq. (B.3), we obtain \(\frac{\partial {\varPi ^S_t}^2}{\partial m_1^2}=-1<0\), so \(\varPi ^S_t\) is concave in \(m_1\). Let \(\frac{\partial \varPi ^S_t}{\partial m_1}=\frac{1}{2} \left( a+r (s+1) e_h+r e_m-m_1\right) -\frac{m_1}{2}=0\), we obtain \(m^*_1=\frac{1}{2} \left( a+r s e_h+r e_h+r e_m\right) \).
Then, we back to the first stage and solve the manufacturer’s and the technology firm’s emission reduction decisions. Replace \(w^*\) and \(m_1^*\) in \(\varPi _m^S(\phi ,e_m,w)\), we obtain \(\frac{\partial {\varPi ^S_m}^2}{\partial e_m^2}=\frac{1}{8} \left( r^2 (1-\phi )-8\right) <0\) and \(\frac{\partial {\varPi ^S _h}^2}{\partial e_h^2}=\frac{1}{16} \left( 2 r^2 (s+1)^2 \phi -\frac{16}{k_h}\right) \), so \(\varPi ^S _m(\phi ,e_m,w)\) is concave in \(e_m\). Set \(\frac{1}{16} \left( 2 r^2 (s+1)^2 \phi -\frac{16}{k_h}\right) <0\), we have \(\phi <\frac{8}{r^2 (s+1)^2 k_h}\), and \(\varPi ^S_h(e_h)\) is concave in \(e_h\) under this condition. Let \(\frac{\partial \varPi ^S_m}{\partial e_m}=\frac{1}{16} \left( 2 e_m \left( r^2(1-\phi )-8\right) -2 r (\phi -1) \left( a+r (s+1) e_h\right) \right) =0\), \(\frac{\partial \varPi ^S_h}{\partial e_h}=\frac{1}{16} \left( 2 r (s+1) \phi \left( a+r (s+1) e_h+r e_m\right) -\frac{16 e_h}{k_h}\right) =0\). We obtain \(e_m^{*}=\frac{a r (\phi -1)}{r^2 (s+1)^2 \phi k_h+r^2(1-\phi ))-8}\) and \(e_h^{*}=-\frac{a r (s+1) \phi k_h}{r^2 (s+1)^2 \phi k_h+r^2 (1-\phi )-8}\).
Replace \(e_m^{*}\) and \(e_h^{*}\) in \(\varPi ^S_m\), we obtain \(\varPi ^S_m(\phi )=\frac{a^2 (1-\phi ) \left( r^2 (\phi -1)+8\right) }{2 \left( 8-r^2 (s+1)^2 \phi k_h+r^2 (\phi -1)\right) {}^2}\). Then we derive \(\frac{\partial \varPi ^S_m}{\partial \phi }=\frac{a^2 \left( 4 \left( r^2 (\phi -1)+8\right) -r^2 (s+1)^2 k_h \left( r^2 (\phi -1)-4 \phi +8\right) \right) }{\left( r^2 (s+1)^2 \phi k_h+r^2 (1-\phi )-8\right) {}^3}\), \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}\)\(=\frac{a^2 r^2 \left( -2 (s+1)^2 k_h \left( r^4 (\phi -1)+64\right) +r^2 (s+1)^4 k_h^2 \left( r^2 (2 \phi -3)-8 (\phi -3)\right) +8 \left( r^2 (\phi -1)+8\right) \right) }{\left( 8-r^2 (s+1)^2 \phi k_h+r^2 (\phi -1)\right) {}^4}\). Set \(\frac{\partial {\varPi ^S_m}^2}{\partial \phi ^2}<0\), we derive \(\phi >\phi _3=\frac{-2 \left( 64-r^4\right) (s+1)^2 k_h+3 r^2 \left( 8-r^2\right) (s+1)^4 k_h^2+8 \left( 8-r^2\right) }{2 r^2 \left( (s+1)^2 k_h-1\right) \left( \left( 4-r^2\right) (s+1)^2 k_h+4\right) }\). Because \(0<\phi <1\), we restrict \(\phi _3<1\) and derive \(\frac{8}{\left( 16-r^2\right) (s+1)^2}<k_h<\frac{8}{r^2 (s+1)^2}\). Let \(\frac{\partial \varPi ^S_m}{\partial \phi }=0\), we obtain \(\phi ^{SR}=\frac{\left( 8-r^2\right) \left( r^2 (s+1)^2 k_h-4\right) }{r^2 \left( \left( 4-r^2\right) (s+1)^2 k_h+4\right) }\). To ensure the optimal solution exists, we restrict \(0<\phi ^{SR}<1\) and derive \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{8}{r^2 (s+1)^2}\), and under this condition, \(\phi >\phi _3\) and \(\phi <\frac{8}{r^2 (s+1)^2 k_h}\) both hold. Thus, the constraint condition is \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{8}{r^2 (s+1)^2}\). Replace \(\phi ^{SR}\) with \(\phi \) in \(e_m^*\), \(e^*_h\), \(w^*\) and \(p^*\), we can obtain the optimal solutions and the profits.
1.4 B-4 Proof of Lemma 2
Here, we compare these decisions when the MS and VN games exist, namely, \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).
-
(a)
Taking the difference between \(\phi ^{SM}\) and \(\phi ^{SN}\), we obtain \(\phi ^{SM}-\phi ^{SN}=\frac{(s+1)^2 k_h \left( 2 r^4 (s+1)^2 k_h-17 r^2+18\right) +18}{2 r^2 \left( \left( r^2-2\right) (s+1)^2 k_h-2\right) \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) }\). When \(\phi ^{SM}-\phi ^{SN}>0\), we derive \((s+1)^2 k_h \left( 2 r^4 (s+1)^2 k_h-17 r^2+18\right) +18>0\). Then we obtain \(k_h<\frac{17 r^2-\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}\) and \(k_h>\frac{17 r^2+\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}\). Due to \(\frac{17 r^2-\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}<0\) and \(\frac{9}{4 r^2 (s+1)^2}-\frac{17 r^2+\sqrt{145 r^4-612 r^2+324}-18}{4 r^4 (s+1)^2}=\frac{18-8 r^2-\sqrt{145 r^4-612 r^2+324}}{4 r^4 (s+1)^2}>0\), so \(\phi ^{SM}-\phi ^{SN}>0\) always holds under the above constraint.
-
(b)
Taking the difference between \(e_m^{SM}\) and \(e_m^{SN}\), we obtain \(e_m^{SM}-e_m^{SR}=\frac{a r}{2 \left( 2 r^4-17 r^2+36\right) (s+1)^2 k_h}>0\).
Taking the difference between \(e_h^{SM}\) and \(e_h^{SN}\), we obtain \(e_h^{SM}-e_h^{SN}=\frac{a r (s+1) k_h}{4 r^4 (s+1)^4 k_h^2-34 r^2 (s+1)^2 k_h+72}>0\) always holds when \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).
1.5 B-5 Proof of Proposition 2
Here, we compare the three members’ profits when the MS and VN games exist, namely, \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).
-
(a)
Taking the difference between \(\varPi _m^{SM}\) and \(\varPi _m^{SN}\), we obtain \(\varPi _m^{SM}-\varPi _m^{SN}=\frac{a^2 \left( \left( 36-17 r^2\right) (s+1)^2 k_h+36\right) }{8 \left( 4-r^2\right) \left( 9-2 r^2\right) (s+1)^2 k_h \left( 4-r^2 (s+1)^2 k_h\right) \left( 9-2 r^2 (s+1)^2 k_h\right) }>0\).
Taking the difference between \(\varPi _h^{SM}\) and \(\varPi _h^{SN}\), we obtain \(\varPi _h^{SM}-\varPi _h^{SN}=\frac{a^2 \left( (s+1)^2 k_h \left( 2 \left( 36-17 r^2\right) (s+1)^2 k_h+17 r^2+36\right) -36\right) }{8 \left( 4-r^2\right) \left( 9-2 r^2\right) (s+1)^4 k_h^2 \left( 4-r^2 (s+1)^2 k_h\right) \left( 9-2 r^2 (s+1)^2 k_h\right) }>0\).
-
(b)
Taking the ratio of \(\varPi _t^{SM}\) to \(\varPi _t^{SN}\), we obtain \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}=\frac{4 \left( 9-2 r^2\right) ^2 \left( 9-2 r^2 (s+1)^2 k_h\right) {}^2 \left( \left( 2-r^2\right) (s+1)^2 k_h+2\right) {}^2}{9 \left( 4-r^2\right) ^2 \left( 4-r^2 (s+1)^2 k_h\right) {}^2 \left( \left( 9-4 r^2\right) (s+1)^2 k_h+9\right) {}^2}\).
When \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}>1\), we obtain that only \(k_h>k^{S}_1=\frac{72 \left( r^2-3\right) }{\left( 23 r^4-102 r^2-\sqrt{-47 r^8+348 r^6+252 r^4-6480 r^2+11664}+108\right) (s+1)^2}\) is in the feasible region \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Hence, when \(k^{S}_1<k_h<\frac{4}{r^2 (s+1)^2}\), we have \(\varPi _t^{SM}>\varPi _t^{SN}\); when \(\frac{9}{4 r^2 (s+1)^2}<k_h<k^{S}_1\), we have \(\varPi _t^{SM}<\varPi _t^{SN}\).
1.6 B-6 Proof of Lemma 3
Here, we compare these decisions when the VN and RS games exist, namely, \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\).
-
(a)
Taking the difference between \(\phi ^{SN}\) and \(\phi ^{SR}\), we obtain \(\phi ^{SN}-\phi ^{SR}=\frac{7 \left( (s+1)^2 k_h \left( 2 r^4 (s+1)^2 k_h-25 r^2+36\right) +36\right) }{2 r^2 \left( \left( r^2-4\right) (s+1)^2 k_h-4\right) \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) }>0\).
-
(b)
Taking the difference between \(e_m^{SN}\) and \(e_m^{SR}\), we obtain \(e_m^{SN}-e_m^{SR}=\frac{7 a r}{2 \left( 2 r^4-25 r^2+72\right) (s+1)^2 k_h}>0\).
Taking the difference between \(e_h^{SN}\) and \(e_h^{SR}\), we obtain \(e_h^{SN}-e_h^{SR}=\frac{7 a r (s+1) k_h}{4 r^4 (s+1)^4 k_h^2-50 r^2 (s+1)^2 k_h+144}>0\) always hold when \(\frac{4}{r^2 (s+1)^2}<k_h<\frac{9}{2 r^2 (s+1)^2}\).
1.7 B-7 Proof of Proposition 3
Here, we compare the three members’ profits when the VN and RS games exist, namely, \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).
Taking the difference between \(\varPi _m^{SN}\) and \(\varPi _m^{SR}\), we obtain
Taking the difference between \(\varPi _h^{SN}\) and \(\varPi _h^{SR}\), we obtain
When \(\varPi _h^{SN}-\varPi _h^{SR}>0\), we derive \(k_h>\frac{1}{2 (s+1)^2}\) or \(k_h<\frac{72}{\left( 25 r^2-72\right) (s+1)^2}\). Due to \(\frac{4}{r^2 (s+1)^2}-\frac{1}{2 (s+1)^2}=\frac{8-r^2}{2 r^2 (s+1)^2}>0\), so \(\varPi _h^{SN}>\varPi _h^{SR}\) always holds when \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\).
Taking the ratio of \(\varPi _t^{SN}\) to \(\varPi _t^{SR}\), we obtain \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}=\frac{9 \left( r^2-8\right) ^2 \left( r^2 (s+1)^2 k_h-8\right) {}^2 \left( \left( 4 r^2-9\right) (s+1)^2 k_h-9\right) {}^2}{32 \left( 9-2 r^2\right) ^2 \left( 9-2 r^2 (s+1)^2 k_h\right) {}^2 \left( \left( r^2-4\right) (s+1)^2 k_h-4\right) {}^2}\).
When \(\frac{\varPi _t^{SM}}{\varPi _t^{SN}}>1\), we found that all thresholds \(k_h\) are not in the feasible region \(\frac{9}{4 r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\). Hence, \(\varPi _t^{SN}>\varPi _t^{SR}\) always holds under the above constraint.
C. The manufacturer’s optimal payment
Here, we explore the manufacturer’s optimal payment by comparing the manufacturer’s profit under different payments. Meanwhile, the impact of payment type on the environment is also analyzed.
1.1 C-1 Proof of Lemma 4
We analyze the effect of payment type on the environment in the MS game. Meanwhile, the condition \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\) holds to ensure the cases LM and SM exist.
-
(a)
Taking the difference between \(e_m^{LM}\) and \(e_m^{SM}\), we obtain \(e_m^{LM}-e_m^{SM}=\frac{2 a r}{2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h}-\frac{2 a}{\left( 4 r-r^3\right) (s+1)^2 k_h}\). This is an increasing function with respect to \(k_h\), thus when \(k_h=\frac{2}{r^2 (s+1)^2}\), the minimum of \(e_m^{LM}-e_m^{SM}\) is \(\frac{a r}{r^4-7 r^2+12}>0\). Hence \(e_m^{LM}>e_m^{SM}\) always holds.
-
(b)
Taking the difference between \(e_h^{LM}\) and \(e_h^{SM}\), we obtain \(e_h^{LM}-e_h^{SM}=\frac{2 a \left( -\left( 3-r^2\right) r^2 (s+1)^2 k_h-2 r^2+8\right) }{r (s+1) \left( 4-r^2 (s+1)^2 k_h\right) \left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) }\). Set \(e_h^{LM}-e_h^{SM}>0\), we derive \(k_h<\frac{2 \left( 4-r^2\right) }{r^2 \left( 3-r^2\right) (s+1)^2}\). Hence, when \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{2 \left( 4-r^2\right) }{r^2 \left( 3-r^2\right) (s+1)^2}\), \(e_h^{LM}>e_h^{SM}\); when \(\frac{2 \left( 4-r^2\right) }{r^2 \left( 3-r^2\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\), \(e_h^{LM}<e_h^{SM}\).
1.2 C-2 Proof of Proposition 4
We analyze the effect of payment type on the profits in the MS game. Meanwhile, the condition \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\) holds to ensure the cases LM and SM exist.
-
(a)
Taking the difference between \(e_m^{LM}\) and \(e_m^{SM}\), we obtain \(\varPi _m^{LM}-\varPi _m^{SM}=\frac{a^2}{2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h}-\frac{2 a^2}{r^2 \left( 4-r^2\right) (s+1)^2 k_h \left( 4-r^2 (s+1)^2 k_h\right) }\). Let \(\varPi _m^{LM}-\varPi _m^{SM}=0\), we derive two roots are \(k_h=\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\) and \(k_h=\frac{9-2 r^2-\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\). However, only \(k_h=\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\) is in the feasible region. Hence, when \(\frac{2}{r^2 (s+1)^2}<k_h<\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}\), \(\varPi _m^{LM}-\varPi _m^{SM}>0\); when \(\frac{9-2 r^2+\sqrt{17-4 r^2}}{r^2 \left( 4-r^2\right) (s+1)^2}<k_h<\frac{4}{r^2 (s+1)^2}\), \(\varPi _m^{LM}-\varPi _m^{SM}<0\).
-
(b)
Taking the difference between \(\varPi _t^{LM}\) and \(\varPi _t^{SM}\), we obtain \(\varPi _t^{LM}-\varPi _t^{SM}=\frac{4 a^2}{\left( 2 \left( 4-r^2\right) -r^2 (s+1)^2 k_h\right) {}^2}-\frac{a^2 \left( \left( 2-r^2\right) (s+1)^2 k_h+2\right) {}^2}{\left( 4-r^2\right) ^2 (s+1)^4 k_h^2 \left( 4-r^2 (s+1)^2 k_h\right) {}^2}\).
Set \(\varPi _t^{LM}-\varPi _t^{SM}=0\), we derive four roots, but only \(k_{h1}=\frac{8-r^4+3 r^2+\sqrt{r^8-10 r^6+33 r^4-48 r^2+64}}{r^2 \left( 6-r^2\right) (s+1)^2}\) is in the feasible region. Hence, when \(\frac{2}{r^2 (s+1)^2}<k_h<k_{h1}\), \(\varPi _t^{LM}-\varPi _t^{SM}>0\); when \(k_{h1}<k_h<\frac{4}{r^2 (s+1)^2}\), \(\varPi _t^{LM}-\varPi _t^{SM}<0\), where \(k_{h1}=k^{M}_3\).
1.3 C-3 Proof of Lemmas 5 and 6
The proof is similar to that of Lemma 4, so here we omit it.
1.4 C-4 Proof of Propositions 5 and 6
The proof is similar to that of Proposition 4, so here we omit it.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, J., Ke, H. & Gao, Y. Manufacturer’s R &D cooperation contract: linear fee or revenue-sharing payment in a low-carbon supply chain. Ann Oper Res 318, 323–355 (2022). https://doi.org/10.1007/s10479-022-04869-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-022-04869-z