Skip to main content
Log in

A novel median-based optimization model for eco-efficiency assessment in data envelopment analysis

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Economic-environmental performance or eco-efficiency is a topic of great interest due to the “green movement.” Data Envelopment Analysis (DEA) is a non-parametric method for measuring the eco-efficiencies in comparable Decision-Making Units (DMUs) under various technology assumptions, e.g., constant or variable returns to scale. In the case of variable returns to scale, the returns to scale (RTS) values show whether the DMUs under consideration have the correct scale size or can be improved by upsizing or downsizing. However, sometimes the RTS values for some DMUs are unusually high or low and hence useless in practice. The RTS-mavericks test is devised to propose RTS bounds to fix this flaw. However, these bounds can be ineffective in practice. Even if this flaw is rectified, it needs to be clarified how the concept of RTS-mavericks influences eco-efficiency analysis. For the case of a single technology and a combination of two technologies (a so-called pollution-generating technology), we derive RTS equations and develop new median-based optimization problems to correct this flaw and show that the new concept can lead to non-convex technologies. We also demonstrate the applicability and exhibit the efficacy of the proposed model in the context of eco-efficiency analysis in the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alirezaee, M., Hajinezhad, E., & Paradi, J. C. (2018). Objective identification of technological returns to scale for data envelopment analysis models. European Journal of Operational Research, 266, 678–688.

    Google Scholar 

  • Bahari, A. R., & Emrouznejad, A. (2014). Influential DMUs and outlier detection in data envelopment analysis with an application to health care. Annals of Operations Research, 223, 95–108.

    Google Scholar 

  • Banker, R. D. (1996). Hypothesis tests using data envelopment analysis. Journal of Productivity Analysis, 7, 139–159.

    Google Scholar 

  • Banker, R. D., & Chang, H. (2006). The super-efficiency procedure for outlier identification, not for ranking efficient units. European Journal of Operational Research, 175, 1311–1320.

    Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiences in data envelopment analysis. Management Science, 30, 1078–1091.

    Google Scholar 

  • Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of Operational Research, 62, 74–84.

    Google Scholar 

  • Barnard, G. A. (1959). Control Charts and Stochastic Processes. Journal of the Royal Statistical Society Series B (methodological), 21, 239–271.

    Google Scholar 

  • Bianchi, M., Valle, I., & Tapia, C. (2020). Measuring eco-efficiency in European regions: Evidence from a territorial perspective. Journal of Cleaner Production, 276, 123–246.

    Google Scholar 

  • Chang, H., Lam Choy, H., & Hwang, I. (2015). An empirical study of returns to scale of CPA firms in the post SOX era. Annals of Operations Research, 229, 253–264.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Google Scholar 

  • Chen, X., & Lin, B. (2020). Assessment of eco-efficiency change considering energy and environment: A study of China’s non-ferrous metals industry. Journal of Cleaner Production, 277, 123388.

    Google Scholar 

  • Clermont, M., & Schaefer, J. (2019). Identification of outliers in data envelopment analysis. Schmalenbach Business Review, 71, 475–496.

    Google Scholar 

  • Dakpo, K. H., & Lansink, A. O. (2019). Dynamic pollution-adjusted inefficiency under the by-production of bad outputs. European Journal of Operational Research, 276, 202–211.

    Google Scholar 

  • Davoodi, A., Zarepisheh, M., & Zhiani Rezai, H. (2015). The nearest MPSS pattern in data envelopment analysis. Annals of Operations Research, 226, 163–176.

    Google Scholar 

  • Dellnitz, A. (2016). RTS-mavericks in data envelopment analysis. Operations Research Letters, 44(5), 622–624.

    Google Scholar 

  • Dellnitz, A., & Rödder, W. (2021). Returns to scale as an established scaling indicator: Always a Good Advisor? Jahrbücher Für Nationalökonomie Und Statistik, 241(2), 173–186.

    Google Scholar 

  • Doyle, J., & Green, R. (1994). Efficiency and Cross-efficiency in DEA: Derivations, meanings and uses. Journal of Operational Research Society, 45, 567–578.

    Google Scholar 

  • Dyson, R. G., & Thanassoulis, E. (1988). Reducing weight flexibility in data envelopment analysis. The Journal of the Operational Research Society, 39, 563–576.

    Google Scholar 

  • Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4–8.

    Google Scholar 

  • Ezici, B., Eğilmez, G., & Gedik, R. (2020). Assessing the eco-efficiency of US manufacturing industries with a focus on renewable vs non-renewable energy use: An integrated time series MRIO and DEA approach. Journal of Cleaner Production, 253, 119630.

    Google Scholar 

  • Førsund, F. R. (1996). On the calculation of the scale elasticity in DEA models. The Journal of Productivity Analysis, 7, 283–302.

    Google Scholar 

  • Fukuyama, H., Liu, H., Song, Y., & Yang, G. (2020). Measuring the capacity utilization of the 48 largest iron and steel enterprises in China. European Journal of Operational Research (in Press). https://doi.org/10.1016/j.ejor.2020.06.012

    Article  Google Scholar 

  • Gancone, A., Pubule, J., Rosa, M., & Blumberga, D. (2017). Evaluation of agriculture eco-efficiency in Latvia. Energy Procedia, 128, 309–315.

    Google Scholar 

  • Golany, B., & Yu, G. (1997). Estimating returns to scale in DEA. European Journal of Operational Research, 103, 28–37.

    Google Scholar 

  • Grzelak, A., Guth, M., Matuszczak, A., Czyzewski, B., & Brelik, A. (2019). Approaching the environmental sustainable value in agriculture: How factor endowments foster the eco-efficiency. Journal of Cleaner Production, 241, 118304.

    Google Scholar 

  • Khezrimotlagh, D., Cook, W. D., & Zhu, J. (2020). A nonparametric framework to detect outliers in estimating production frontiers. European Journal of Operational Research, 286, 375–388.

    Google Scholar 

  • Kleine, A., Rödder, W., & Dellnitz, A. (2016). Returns to scale revisited towards cross-RTS. In M. Clermont, R. Souren, & H. Ahn (Eds.), Nachhaltiges Entscheiden Beiträge zum multiperspektivischen Performancemanagement von Wertschöpfungsprozessen (pp. 385–404). Springer.

    Google Scholar 

  • Kloss, M., (2017). Factor productivity in EU agriculture: A microeconometric perspective, Studies on the Agricultural and Food Sector in Transition Economies, No. 89, ISBN 978–3–95992–054–4, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale), http://nbn-resolving.de/urn:nbn:de:gbv:3:2-86101.

  • Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154, 437–446.

    Google Scholar 

  • Koskela, M., & Vehmas, J. (2012). Defining eco-efficiency: A case study on the finnish forest industry. Business Strategy and the Environment, 21, 546–566.

    Google Scholar 

  • Kuosmanen, T., & Kortelainen, M. (2007). Valuing environmental factors in costbenefit analysis using data envelopment analysis. Ecological Economics, 62, 56–65.

    Google Scholar 

  • Lozano, S., Adenso-Diaz, B., & Barba-Gutierrez, Y. (2011). Russell non-radial ecoefficiency measure and scale elasticity of a sample of electric/electronic products. Journal of the Franklin Institute, 348, 1605–1614.

    Google Scholar 

  • Moutinho, V., Fuinhas, J. A., Marques, A. C., & Santiago, R. (2018). Assessing eco-efficiency through the DEA analysis and decoupling index in the Latin America countries. Journal of Cleaner Production, 205, 512–524.

    Google Scholar 

  • Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of Environmental Economics and Management, 64(1), 117–135.

    Google Scholar 

  • Neuenfeldt, S., Gocht, A., Heckelei, T., & Ciaian, P. (2019). Explaining farm structural change in the European agriculture: A novel analytical framework. European Review of Agricultural Economics, 46, 713–768.

    Google Scholar 

  • Podinovski, V. V., & Bouzdine-Chameeva, T. (2015). Consistent weight restrictions in data envelopment analysis. European Journal of Operational Research, 244, 201–209.

    Google Scholar 

  • Podinovski, V. V., Førsund, F. R., & Krivonozhko, V. E. (2009). A simple derivation of scale elasticity in data envelopment analysis. European Journal of Operational Research, 197, 149–153.

    Google Scholar 

  • Podinovski, V. V., & Kuosmanen, T. (2011). Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions. European Journal of Operational Research, 211, 577–585.

    Google Scholar 

  • Quintano, C., Mazzocchi, P., & Rocca, A. (2020). Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. Journal of Cleaner Production, 259, 120979.

    Google Scholar 

  • Rödder, W., Kleine, A., & Dellnitz, A. (2017). Scaling production and improving efficiency in DEA: An interactive approach. Journal of Industrial Engineering International. https://doi.org/10.1007/s40092-017-0233-7:1-10

    Article  Google Scholar 

  • Rousseeuw, P. J., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

    Google Scholar 

  • Sueyoshi, T., Li, A., & Xiaohong, L. (2019). Exploring sources of China’s CO2 emission: Decomposition analysis under different technology changes. European Journal of Operational Research, 279, 984–995.

    Google Scholar 

  • Thompson, R. G., Singleton, F. D. J., Thrall, R. M., Smith, B. A., & Wilson, M. (1986). Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces, 16, 35–49.

    Google Scholar 

  • Wang, X., Ding, H., & Liu, L. (2019). Eco-efficiency measurement of industrial sectors in China: A hybrid super-efficiency DEA analysis. Journal of Cleaner Production, 229, 53–64.

    Google Scholar 

  • Wu, Y., Chen, Z., & Xia, P. (2018). An extended DEA-based measurement for eco-efficiency from the viewpoint of limited preparation. Journal of Cleaner Production, 195, 721–733.

    Google Scholar 

  • Zhang, B., Jun, B., Fan, Z., Yuan, Z., & Ge, J. (2008). Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecological Economics, 68, 306–316.

    Google Scholar 

  • Zhang, B., Wang, J., Meng, L., Zhu, C., & Nie, R. (2014). Estimating returns to scale of Chinese airport airside activities using the CCR-0-objective RTS method. Journal of the Operational Research Society, 65, 755–762.

    Google Scholar 

  • Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. European Journal of Operational Research, 264, 1–16.

    Google Scholar 

  • Zhou, P., Ang, B. W., & Poh, K. L. (2006). Slacks-based efficiency measures for modeling environmental performance. Ecological Economics, 60, 111–118.

    Google Scholar 

  • Zhu, W., Xu, L., Tang, L., & Xiang, X. (2019). Eco-efficiency of the Western Taiwan Straits Economic Zone: An evaluation based on a novel eco-efficiency model and empirical analysis of influencing factors. Journal of Cleaner Production, 234, 638–652.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editors for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Tavana.

Ethics declarations

Conflict of interest

The above authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For the case of a pollution-generating technology, we immediately show the linearized Model (1A) because the linearization follows the same logic as in the single technology case.

$$\begin{array}{ll}\mathrm{max} {\mathit{eff}}_{k}={\mathbf{U}}_{k}^{g\mathrm{T}}{\mathbf{y}}_{k}^{g} - {\widetilde{\mathbf{U}}}_{k}^{b\mathrm{T}}{\mathbf{y}}_{k}^{b} +{ u}_{k} \\ \mathrm{s}.\mathrm{t}. \\ {\mathbf{V}}_{k}^{g\mathrm{T}}{\mathbf{x}}_{k}^{g} {+\mathbf{V}}_{k}^{b\mathrm{T}}{\mathbf{x}}_{k}^{b} {-\widetilde{\mathbf{V}}}_{k}^{b\mathrm{T}}{\mathbf{x}}_{k}^{b}=1 \\ {\mathbf{U}}_{k}^{g\mathrm{T}}{\mathbf{y}}_{j}^{g} - {\mathbf{V}}_{k}^{g\mathrm{T}}{\mathbf{x}}_{j}^{g} {-\mathbf{V}}_{k}^{b\mathrm{T}}{\mathbf{x}}_{j}^{b}+ {u}_{k}\le 0& \forall j\in \mathcal{J}\\ {\widetilde{\mathbf{U}}}_{k}^{b\mathrm{T}}{\mathbf{y}}_{j}^{b}-{\widetilde{\mathbf{V}}}_{k}^{b\mathrm{T}}{\mathbf{x}}_{j}^{b}\ge 0& \forall j\in \mathcal{J}\\ { u}_{k}+\left({-\mathbf{U}}_{k}^{g\mathrm{T}}{\mathbf{y}}_{k}^{g}\right)\cdot \left[-1+\mathrm{CV}\cdot \widehat{\sigma }+median\left({\varvec{\rho}}\right)\right]\le 0 \\ -{ u}_{k}+\left({-\mathbf{U}}_{k}^{g\mathrm{T}}{\mathbf{y}}_{k}^{g}\right)\cdot \left[1+\mathrm{CV}\cdot \widehat{\sigma }-median\left({\varvec{\rho}}\right)\right]\le 0& \\ {\mathbf{U}}_{k}^{g},{\mathbf{V}}_{k}^{g},{\mathbf{V}}_{k}^{b},{\widetilde{\mathbf{U}}}_{k}^{b},{\widetilde{\mathbf{V}}}_{k}^{b}\ge 0 \,\mathrm{and}\,{ u}_{k} \mathrm{free} \end{array}$$
(21)

Proposition 10

Again, let \(\mathcal{L}\) be the index set of RTS-mavericks. Then, problem (1A) leads to modified eco-efficiency scores \({eff}_{k}^{mod**}<{eff}_{k}^{**} \forall k\in \mathcal{L}\), with \({eff}_{k}^{mod**}and {eff}_{k}^{**}\) being the optimal eco-efficiencies of models (1A) and (9).

Proof

To prove this proposition, one can use the same reasoning as in Proposition 7. □

For the sake of completeness, we give Algorithm 2, which can be used in the case of a pollution-generating technology.

figure b

Appendix 2

See Tables

Table 8 Pollution-generating technology results for the E.U. member states (Algorithm 2)

8 and

Table 9 Normal vs. half-normal distribution-based estimates

9

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dellnitz, A., Tavana, M. & Banker, R. A novel median-based optimization model for eco-efficiency assessment in data envelopment analysis. Ann Oper Res 322, 661–690 (2023). https://doi.org/10.1007/s10479-022-04937-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04937-4

Keywords

Navigation