Skip to main content
Log in

Pricing of platform service supply chain with dual credit: Can you have the cake and eat it?

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Online shopping has become the main form of daily consumption, which contributes to the growing maturity of platform service supply chains (PSSCs). However, financial constraints of consumers and sellers have emerged as the key factors hindering their participation. To attract both sides on board and expand transaction volume, seller’s credit combined with buyer’s credit, or dual credit, has been launched by platforms. However, studies on whether this dual credit service is worth implementing remains to be an uncharted area. This paper aims to explore the e-commerce (EC) platform ecosystem with credit services, which is composed of a platform, a seller, and a group of consumers. By using game-theoretic approaches, our study finds that the dual credit drives down product price, which always profits consumers compared to the single buyer’s credit; platform charge, however, changes vaguely so that other agents are not always profited. For mid-to-high end products, platforms’ incentive in providing dual credit can be enhanced by raising seller’s capital or consumers’ dishonesty aversion coefficient, which also increases social welfare; while sellers engage in credit only when under severe shortage of capital. The effectiveness of raising consumers’ aversion coefficient in motivating the acceptance of financing services for sellers depends on the product type. Besides, for low-end products, the welfare of both the seller and the society always suffer, making the dual credit not worth promoting in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://brandirectory.com/rankings/retail.

  2. https://ir.jd.com/?c=253315&p=irol-IRHome.

  3. https://ir.aboutamazon.com/news-release/news-release-details/2021/Amazon.com-Announces-Fourth-Quarter-Results/.

  4. https://www.cnbc.com/2019/05/08/amazon-launched-lending-referral-program-in-china.html.

  5. https://www.amazon.com/gp/cobrandcard/marketing.html?pr=conplcc.

  6. https://jrhelp.jd.com/show/getProblemInfo-2210.

  7. http://www.gov.cn/zhengce/content/2015-06/20/content_9955.htm.

  8. https://www.ecomengine.com/blog/amazon-fba-new-selection-program.

  9. https://www.linkedin.com/pulse/everything-you-need-know-what-amazon-doing-financial-services-davis.

  10. https://www.cnbc.com/2019/05/08/amazon-launched-lending-referral-program-in-china.html.

  11. PDD is an emerging, newly listed e-commerce platform in China, which attracts mostly price-sensitive consumers, and it has few brands on board.

References

  • Abhishek, V., Jerath, K., & Zhang, Z. J. (2016). Agency selling or reselling? Channel structures in electronic retailing. Management Science, 62(8), 2259–2280.

    Google Scholar 

  • Alex, M., & Johnson, N. L. (2016). Modern Monopolies, what it takes to dominate the 21st century economy (p. 107). St. Martin’s Press.

    Google Scholar 

  • An, S., Li, B., Song, D. P., & Chen, X. (2021). Green credit financing versus trade credit financing in a supply chain with carbon emission limits. European Journal of Operational Research, 292(1), 125–142.

    Google Scholar 

  • Babich, V., & Kouvelis, P. (2018). Introduction to the special Issue on research at the interface of finance, operations, and risk management (iFORM): Recent contributions and future directions. Manufacturing & Service Operations Management, 20(1), 1–18.

    Google Scholar 

  • Belavina, E., Marinesi, S., & Tsoukalas, G. (2020). Rethinking crowdfunding platform design: Mechanisms to deter misconduct and improve efficiency. Management Science, 66(11), 4980–4997.

    Google Scholar 

  • Cai, Y. J., Wang, Y., & Zhang, J. (2020). Enhancing e-platform business by customer service systems: A multi-methodological case study on Ali Wangwang instant message’s impacts on TaoBao. Annals of Operations Research, 291, 59–81.

    Google Scholar 

  • Caldentey, R., & Haugh, M. B. (2009). Supply contracts with financial hedging. Operations Research, 57(1), 47–65.

    Google Scholar 

  • Chan, Y. L., Hsu, S. M., & Liao, M. H. (2021). An inventory model for perishable items under upstream and downstream trade credit. In L. Barolli, A. Poniszewska-Maranda, & H. Park (Eds.), Innovative mobile and internet services in ubiquitous computing (pp. 552–560). Springer.

    Google Scholar 

  • Chen, X., Li, B., Chen, W., & Wu, S. (2021). Influences of information sharing and online recommendations in a supply chain: Reselling versus agency selling. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03968-7

    Article  Google Scholar 

  • Dean, J. (2017). Amazon lending challenges the banks. The Times (United Kingdom), 43.

  • Deng, G., Zhao, X. B., & Wei, G. (2014). A delay-in-payment contract for pareto improvement of a supply chain with stochastic demand. Omega, 49, 60–68.

    Google Scholar 

  • Ding, N. (2015). Consumer credits and economic growth in China. The Chinese Economy, 48(1), 269–278.

    Google Scholar 

  • Dong, L., Ren, L., & Zhang, D. (2019). Financing small and medium-size enterprises via retail platforms. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3257899

    Article  Google Scholar 

  • Fan, X., Zhao, W., Zhang, T., & Yan, E. D. (2020). Mobile payment, third-party payment platform entry and information sharing in supply chains. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03749-8

    Article  Google Scholar 

  • Gao, G. X., Fan, Z. P., Fang, X., & Lim, Y. F. (2018). Optimal Stackelberg strategies for financing a supply chain through online peer-to-peer lending. European Journal of Operational Research, 267(2), 585–597.

    Google Scholar 

  • Giri, B. C., & Maiti, T. (2013). Supply chain model with price- and trade credit-sensitive demand under two-level permissible delay in payments. International Journal of Systems Science, 44(5), 937–948.

    Google Scholar 

  • Gong, D. Q., Liu, S. F., Liu, J., & Ren, L. (2020). Who benefits from online financing? A sharing economy E-tailing platform perspective. International Journal of Production Economics, 222, 107490.

    Google Scholar 

  • Grochulski, B. (2010). Optimal personal bankruptcy design under moral hazard. Review of Economic Dynamics, 13(2), 350–378.

    Google Scholar 

  • Heng, M. S. H. (2001). Implications of E-commerce for banking and finance. Vrije University.

    Google Scholar 

  • Heydari, J., Rastegar, M., & Glock, C. H. (2017). A two-level delay in payments contract for supply chain coordination: The case of credit-dependent demand. International Journal of Production Economics, 191, 26–36.

    Google Scholar 

  • Huang, C. K., Tsai, D. M., Wu, J. C., & Chung, K. J. (2010). An integrated vendor-buyer inventory model with order-processing cost reduction and permissible delay in payments. European Journal of Operational Research, 202(2), 473–478.

    Google Scholar 

  • Huang, Y. F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54, 1011–1015.

    Google Scholar 

  • Jaggi, C. K., Goyal, S. K., & Goel, S. K. (2008). Retailer’s optimal replenishment decisions with credit-linked demand under permissible delay in payments. European Journal of Operational Research, 190, 130–135.

    Google Scholar 

  • Jaggi, C. K., Kapur, P. K., Goyal, S. K., & Goel, S. K. (2012). Optimal replenishment and credit policy in EOQ model under two-levels of trade credit policy when demand is influenced by credit period. International Journal of System Assurance Engineering & Management, 3(4), 352–359.

    Google Scholar 

  • Jia, L., Xue, G., Fu, Y. W., & Xu, L. J. (2018). Factors affecting consumers’ acceptance of e-commerce consumer credit service. International Journal of Information Management, 40, 103–110.

    Google Scholar 

  • Kaplan, S., & Sawhney, M. (2000). E-hubs: The new B2B market places. Harvard Business Review, 78(3), 97–106.

    Google Scholar 

  • Kouvelis, P., & Zhao, W. H. (2012). Financing the newsvendor: Supplier vs. bank, and the structure of optimal trade credit contracts. Operations Research, 60(3), 566–580.

    Google Scholar 

  • Kouvelis, P., & Zhao, W. H. (2015). Supply chain contract design under financial constraints and bankruptcy costs. Management Science, 62(8), 2341–2357.

    Google Scholar 

  • Kumar, P., Langberg, N., & Zvilichovsky, D. (2019). Crowdfunding, financing constraints, and real effects. Management Science, 66(8), 3561–3580.

    Google Scholar 

  • Kwon, H. D., Lippman, S. A., McCardle, K. F., & Tang, C. S. (2010). Project management contracts with delayed payments. Manufacturing & Service Operations Management, 12(4), 692–707.

    Google Scholar 

  • Lai, Z., Lou, G., Zhang, T., & Fan, T. J. (2021). Financing and coordination strategies for a manufacturer with limited operating and green innovation capital: Bank credit financing versus supplier green investment. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04098-w

    Article  Google Scholar 

  • Lee, H. H., Zhou, J., & Wang, J. Q. (2018). Trade credit financing under competition and its impact on firm performance in supply chains. Manufacturing & Service Operations Management, 20(1), 35–52.

    Google Scholar 

  • Li, H., & Cao, E. (2021). Competitive crowdfunding under asymmetric quality information. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03939-y

    Article  Google Scholar 

  • Li, J., Wang, Y. J., Feng, G. Z., Wang, S. Y., & Song, Y. G. (2020). Supply chain finance review: Current situation and future trend. System Engineering Theory and Practice, 40(8), 1977–1995.

    Google Scholar 

  • Li, Y. Y., Li, Y., & Li, Y. (2019). What factors are influencing credit card customer’s default behavior in China? A study based on survival analysis. Physica A: Statistical Mechanics and Its Applications, 526(15), 120861.

    Google Scholar 

  • Liao, J. J. (2008). An EOQ model with non-instantaneous receipt and exponentially deteriorating items under two-level trade credit. International Journal of Production Economics, 113, 852–861.

    Google Scholar 

  • Lin, F., & Chan, Y. L. (2019). Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits. European Journal of Operational Research, 278, 283–295.

    Google Scholar 

  • Lin, M., Pan, X. A., & Zheng, Q. (2020). Platform pricing with strategic buyers: The impact of future production cost. Production and Operations Management, 22(4), 645–867.

    Google Scholar 

  • Liu, W. H., Yan, X. Y., Li, X., & Wei, W. Y. (2020). The impacts of market size and data-driven marketing on the sales mode selection in an internet platform based supply chain. Transportation Research Part E: Logistics and Transportation Review, 136, 101914.

    Google Scholar 

  • Liu, W. H., Yan, X. Y., Wei, W. Y., & Xie, D. (2019). Pricing decisions for service platform with provider’s threshold participating quantity, value-added service and matching ability. Transportation Research Part E: Logistics and Transportation Review, 122, 410–432.

    Google Scholar 

  • Liu, Z. K., Zhang, D. J., & Zhang, F. Q. (2021). Information sharing on retail platforms. Manufacturing & Service Operations Management, 23(3), 547–730.

    Google Scholar 

  • Mantin, B., Krishnan, H., & Dhar, T. (2014). The strategic role of third-party marketplaces in retailing. Production & Operations Management, 23(11), 1937–1949.

    Google Scholar 

  • Ni, J., Chu, L. K., & Li, Q. (2017). Capacity decisions with debt financing: The effects of agency problem. European Journal of Operational Research, 261(3), 1158–1169.

    Google Scholar 

  • Panja, S., & Mondal, S. K. (2019). Analyzing a four-layer green supply chain imperfect production inventory model for green products under type-2 fuzzy credit period. Computers & Industrial Engineering, 129, 435–453.

    Google Scholar 

  • Panja, S., & Mondal, S. K. (2020). Exploring a two-layer green supply chain game theoretic model with credit linked demand and mark-up under revenue sharing contract. Journal of Cleaner Production, 250, 119491.

    Google Scholar 

  • Papouskova, M., & Hajek, P. (2019). Two-stage consumer credit risk modelling using heterogeneous ensemble learning. Decision Support Systems, 118, 33–45.

    Google Scholar 

  • Parker, G. G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform revolution: How networked markets are transforming the economy—And how to make them work for you (p. 46). W. W. Norton & Company.

    Google Scholar 

  • Pei, Q., Chan, H., Zhang, T., & Li, Y. (2022). Benefits of the implementation of supply chain finance. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04566-x

    Article  Google Scholar 

  • Peura, H., Yang, S. A., & Lai, G. M. (2017). Trade credit in competition: A horizontal benefit. Manufacturing & Service Operations Management, 19(2), 165–335.

    Google Scholar 

  • Prelec, D., & Simester, D. (2001). Always leave home without it: A further investigation of the credit-card effect on willingness to pay. Marketing Letters, 12(1), 5–12.

    Google Scholar 

  • Qin, X. L., Liu, Z. X., & Tian, L. (2020). The strategic analysis of logistics service sharing in an e-commerce platform. Omega, 92, 102153.

    Google Scholar 

  • Ryan, J. K., Sun, D., & Zhao, X. Y. (2012). Competition and coordination in online marketplaces. Production & Operations Management, 21(6), 997–1014.

    Google Scholar 

  • Sun, J., Yuan, P., & Hua, L. (2022). Pricing and financing strategies of a dual-channel supply chain with a capital-constrained manufacturer. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04602-w

    Article  Google Scholar 

  • Taleizadeh, A. A., Pentico, D. W., Jabalameli, M. S., & Aryanezhad, M. (2013). An EOQ model with partial delayed payment and partial backordering. Omega, 41(2), 354–368.

    Google Scholar 

  • Tan, B., Anderson, E. G., & Parker, G. G. (2020). Platform pricing and investment to drive third party value creation in two-sided networks. Information Systems Research, 31(1), 217–239.

    Google Scholar 

  • Tang, R. H., & Yang, L. (2020). Financing strategy in fresh product supply chains under e-commerce environment. Electronic Commerce Research and Applications, 39, 100911.

    Google Scholar 

  • Teng, J. T., & Goyal, S. K. (2007). Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits. Journal of the Operational Research Society, 58, 1252–1255.

    Google Scholar 

  • Tsao, Y. C. (2017). Channel coordination under two-level trade credits and demand uncertainty. Applied Mathematical Modelling, 52, 160–173.

    Google Scholar 

  • Tunca, T. I., & Zhu, W. M. (2017). Buyer intermediation in supplier finance. Management Science, 64(12), 5631–5650.

    Google Scholar 

  • Wang, C. F., Fan, X. J., & Yin, Z. (2020). Financing online retailers: Bank vs. electronic business platform, equilibrium, and coordinating strategy. European Journal of Operational Research, 276(1), 343–356.

    Google Scholar 

  • Wang, Y. Y., Yu, Z. Q., & Shen, L. (2019). Study on the decision-making and coordination of an e-commerce supply chain with manufacturer fairness concerns. International Journal of Production Research, 57(9), 2788–2808.

    Google Scholar 

  • White, M. J. (2007). Bankruptcy reform and credit cards. Journal of Economic Perspectives, 21, 175–200.

    Google Scholar 

  • Yan, N., Zhang, Y., Xu, X., & Gao, Y. (2021). Online finance with dual channels and bidirectional free-riding effect. International Journal of Production Economics, 231, 107834.

    Google Scholar 

  • Yang, S. A., & Birge, J. R. (2018). Trade credit, risk sharing, and inventory financing portfolios. Management Science, 64(8), 3667–3689.

    Google Scholar 

  • Yong, L. A., Chen, A., Yin, Y. H., Li, H., Zhu, Q. N., & Luo, J. (2021). A framework for sustainable management of the platform service supply chain: An empirical study of the logistics sector in china. International Journal of Production Economics, 235, 108112.

    Google Scholar 

  • Yu, J. J., Tang, C. S., & Shen, Z. J. M. (2018). Improving consumer welfare and manufacturer profit via government subsidy programs: Subsidizing consumers or manufacturers? Manufacturing & Service Operations Management, 20(4), 601–800.

    Google Scholar 

  • Zha, Y., Zhang, J., Yue, X., & Hua, Z. S. (2015). Service supply chain coordination with platform effort-induced demand. Annals of Operations Research, 235, 785–806.

    Google Scholar 

  • Zhang, B. F., Wu, D. D., & Liang, L. (2018). Trade credit model with customer balking and asymmetric market information. Transportation Research Part E: Logs and Transportation Review, 110, 31–46.

    Google Scholar 

  • Zhang, D. J., Dai, H. C., Dong, L. X., Qi, F. F., Zhang, N. N., Liu, X. F., Liu, Z. Y., & Yang, J. (2019a). The long-term and spillover effects of price promotions on re- tailing platforms: Evidence from a large randomized experiment on Alibaba. Management Science, 66(6), 2589–2609.

    Google Scholar 

  • Zhang, D. J., Dai, H. C., Dong, L. X., Wu, Q., Guo, L. F., & Liu, X. F. (2019b). The value of pop-up stores on retailing platforms: Evidence from a field experiment with Alibaba. Management Science, 65(11), 5142–5151.

    Google Scholar 

  • Zhen, X. P., Shi, D., Li, Y. J., & Zhang, C. (2020). Manufacturer’s financing strategy in a dual-channel supply chain: Third-party platform, bank, and retailer credit financing. Transportation Research Part E: Logs and Transportation Review, 133, 101820.

    Google Scholar 

  • Zhou, L. Y., Wang, W. Q., Xu, J. J., Liu, T., & Gu, J. B. (2018). Perceived information transparency in B2C e-commerce: An empirical investigation. Inform & Management, 55(7), 912–927.

    Google Scholar 

  • Zhu, L., & Ou, Y. (2021). Enhance financing for small- and medium-sized suppliers with reverse factoring: A game theoretical analysis. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04361-0

    Article  Google Scholar 

  • Zhu, X., Yang, C., Liu, K., Zhang, R., & Jiang, Q. Q. (2021). Cooperation and decision making in a two-sided market motivated by the externality of a third-party social media platform. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04109-w

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program of National Social Science Foundation of China under Grant No. 20&ZD060; the Key Program of National Social Science Foundation of China under Grant No. 20AJY008.

Author information

Authors and Affiliations

Authors

Contributions

Lihong Wei: Conceptualization, Methodology, Formal analysis, Software, Data curation, Writing - original draft. Jiaping Xie: Project administration, Supervision, Funding acquisition. Weijun Zhu: Validation, Writing - review& editing. Qinglin Li: Writing - review & editing.

Corresponding author

Correspondence to Jiaping Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A

We first perform a detailed analysis of consumers’ demand. Given the product price \(p_{s}\), consumers make product purchase decisions: purchase with buyer’s credit payment, purchase with personal income payment or no purchase. Obviously, the only source of return when consumers do not purchase products is the risk-free investment market, i.e., the reserved utility is \(U_{i}^{r} = \left( {1 + r_{F} } \right)x_{i}\). When the consumer chooses buyer’s credit payment, consumer \(i\) can use the credit payment to purchase a product at the beginning and repay the debt with the principal and interest gained from risk-free investment at the end of the period, thus the utility obtained by consumer \(i\) from purchasing the product is

$$\begin{aligned} {\text{E}}U_{i}^{A} &= v + \left[ {\left( {1 + r_{F} } \right)x_{i} - p_{s} } \right]^{ + } - k_{A} \left[ {p_{s} - \left( {1 + r_{F} } \right)x_{i} } \right]^{ + } \\&= \left\{ {\begin{array}{*{20}l} {v + \left( {1 + r_{F} } \right)x_{i} - p_{s} ,} \hfill & {\quad x_{i} \ge \frac{{p_{s} }}{{1 + r_{F} }}} \hfill \\ {v + k_{A} \left( {1 + r_{F} } \right)x_{i} - k_{A} p_{s} ,} \hfill & {\quad x_{i} < \frac{{p_{s} }}{{1 + r_{F} }}} \hfill \\ \end{array} } \right..\end{aligned} $$
(A1)

And when consumers pay with their personal income, they can only invest their surplus in risk-free market, and thus the consumer’s utility function is

$$ EU_{i}^{N} = \left\{ {\begin{array}{*{20}l} {v + \left( {1 + r_{F} } \right)\left( {x_{i} - p_{s} } \right), } \hfill & {\quad x_{i} \ge p_{s} } \hfill \\ {0,} \hfill & {\quad x_{i} < p_{s} } \hfill \\ \end{array} } \right.. $$
(A2)

When \(x_{i} \ge p_{s}\), \({\text{E}}U_{i}^{A} - EU_{i}^{N} = r_{F} p_{s} \ge 0\), \({\text{E}}U_{i}^{A} - U_{i}^{r} = v - p_{s}\), and thus consumer \(i\)’s product purchase decision is \(\omega^{i} = \left\{ {\begin{array}{*{20}c} {1, v \ge p_{s} } \\ {0, v < p_{s} } \\ \end{array} } \right.\); when \(\frac{{p_{s} }}{{1 + r_{F} }} \le x_{i} < p_{s}\), \({\text{E}}U_{i}^{A} - U_{i}^{r} = v - p_{s}\), consumer \(i\)’s product purchase decision is likewise \(\omega^{i} = \left\{ {\begin{array}{*{20}c} {1, v \ge p_{s} } \\ {0, v < p_{s} } \\ \end{array} } \right.\); while \(0 \le x_{i} < \frac{{p_{s} }}{{1 + r_{F} }}\), \({\text{E}}U_{i}^{A} - U_{i}^{r} = v - \left( {1 - k_{A} } \right)\left( {1 + r_{F} } \right)x_{i} - k_{A} p_{s}\), and consumer \(i\)’s product purchase decision is

$$\omega^{i} = \left\{ {\begin{array}{*{20}c} {1, v - k_{A} p_{s} \ge \left( {1 - k_{A} } \right)\left( {1 + r_{F} } \right)x_{i} } \\ {0, v - k_{A} p_{s} < \left( {1 - k_{A} } \right)\left( {1 + r_{F} } \right)x_{i} } \\ \end{array} } \right..$$

Thus, consumers all use credit payments and \(\frac{{p_{s} }}{{1 + r_{F} }} \le \frac{{v - k_{A} p_{s} }}{{\left( {1 - k_{A} } \right)\left( {1 + r_{F} } \right)}}\) holds if \(v \ge p_{s}\), the market demand is 1. If \(v < p_{s}\), there is \(\frac{{p_{s} }}{{1 + r_{F} }} > \frac{{v - k_{A} p_{s} }}{{\left( {1 - k_{A} } \right)\left( {1 + r_{F} } \right)}}\), and the market demand is \(\frac{{v - k_{A} p_{s} }}{{a\left( {1 + r_{F} } \right)\left( {1 - k_{A} } \right)}}\). Therefore, consumers’ demand function is

$$ D = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {\quad p_{s} \le v} \hfill \\ {\frac{{v - k_{A} p_{s} }}{{a\left( {1 + r_{F} } \right)\left( {1 - k_{A} } \right)}},} \hfill & {\quad v < p_{s} \le \frac{v}{{k_{A} }}} \hfill \\ \end{array} } \right.. $$
(A3)

1.2 Appendix B

1.2.1 Proof of Proposition 1

The maximized profit for the seller is

$$ \left\{ {\begin{array}{*{20}l} {\max\;\; \Pi_{s}^{Ns} \left( {p_{s}^{Ns} } \right) = \left( {p_{s}^{Ns} - p_{p}^{Ns} } \right)D + \left( {1 + r_{F} } \right)\left( {B - cD} \right)} \hfill \\ {{\text{s.t.}}\; \;cD \le B} \hfill \\ \end{array} } \right.. $$
(B1)

First, the financial constraint is not considered. According to the demand function, the seller’s profit is a piecewise function of product price. When \(p_{s}^{Ns} \le v\), the seller’s pricing decision is \(p_{s}^{Ns} = v\); when \(v < p_{s}^{Ns} \le \frac{v}{{k_{A} }}\),

$$\begin{aligned}{p}_{s}^{Ns}\left({p}_{p}^{Ns}\right)&=\mathrm{max}\left[\mathrm{min}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{Ns}+\left(1+{r}_{F}\right)c}{2},\frac{v}{{k}_{A}}\right),v\right]\\&=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} ,& {p}_{p}^{Ns}>\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\\ \frac{v}{2{k}_{A}}+\frac{{p}_{p}^{Ns}+\left(1+{r}_{F}\right)c}{2},& \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\\ v , &{p}_{p}^{Ns}\le \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\end{array}\right.\end{aligned}.$$

Second, consider the financial constraint. When \(p_{s}^{Ns} = v\), the seller with limited capital cannot afford to satisfy all consumers and has to give up this price; when \(p_{s}^{Ns} > v\), the capital constraint is equivalent to \(p_{s}^{Ns} \ge \frac{{cv - a\left( {1 + r_{F} } \right)\left( {1 - k_{A} } \right)B}}{{ck_{A} }}\).

Thus, the seller’s price response function after considering the capital constraint is as follows.

(i) When \(B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\ge v\) holds. The seller’s price response function can be further expressed as

$$\begin{aligned}&{p}_{s}^{Ns}\left({p}_{p}^{Ns}\right)\\&=\left\{\begin{array}{ll}\frac{v}{{k}_{A}},& {p}_{p}^{Ns}>\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\\ \frac{v}{2{k}_{A}}+\frac{{p}_{p}^{Ns}+\left(1+{r}_{F}\right)c}{2},& \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c.\\ \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &{p}_{p}^{Ns}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\end{array}\right.\end{aligned}$$
(B2)

(ii) When \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\), \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}<v\). The seller’s price response function can be expressed as.

$${p}_{s}^{Ns}\left({p}_{p}^{Ns}\right)=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} ,& {p}_{p}^{Ns}>\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\\ \frac{v}{2{k}_{A}}+\frac{{p}_{p}^{Ns}+\left(1+{r}_{F}\right)c}{2},& \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\\ v ,& {p}_{p}^{Ns}\le \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\end{array}\right..$$
(B3)

The maximum profit of the platform is

$$\mathrm{max }{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)={p}_{p}^{Ns}D+{\int }_{i\in S}\left[\mathrm{min}\left[{p}_{s}^{Ns},\left(1+{r}_{F}\right){x}_{i}\right]-\left(1+{r}_{F}\right){p}_{s}^{Ns}\right]f\left({x}_{i}\right)d{x}_{i}.$$
(B4)

Since the seller’s response function is related not only to the platform charge but also to the seller’s capital, platform’s profit is likewise related to these two parameters. (1.1) \(\le \frac{vc}{a\left(1+{r}_{F}\right)}\). We first determine the best choice of platform in different charging intervals. When\({p}_{p}^{Ns}>\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), \({\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)=0\), and any charge that not lower than \(\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\) has no effect on equilibrium strategies, which can be set to \({p}_{p}^{Ns}=\frac{v}{{k}_{A}}\), namely consumers’ reservation price, and the seller’s profit is \(\left(1+{r}_{F}\right)B\). When \({p}_{p}^{Ns}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\), \(D=\frac{B}{c}\).

$$\begin{aligned}{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)&={p}_{p}^{Ns}D-\left(1+{r}_{F}\right){p}_{s}^{Ns}D+{\int }_{0}^{\frac{v-{k}_{A}{p}_{s}^{Ns}}{\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}}\left(1+{r}_{F}\right){x}_{i}f\left({x}_{i}\right)d{x}_{i}\\&=\frac{B(2c{k}_{A}{p}_{p}^{Ns}+2(1+{r}_{F})(aB\left(1+{r}_{F}\right)-cv)-aB{k}_{A}(1+3{r}_{F}+2{r}_{F}^{2}))}{2{c}^{2}{k}_{A}},\end{aligned}$$

and \({\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)\) is an increasing function of \({p}_{p}^{Ns}\), so we have \({p}_{p}^{Ns}=\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\). When \(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), \(D=\frac{v-{k}_{A}(\left(1+{r}_{F}\right)c+{p}_{p}^{Ns})}{2a(1-{k}_{A})(1+{r}_{F})}\),

$$\begin{aligned}&{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)=\frac{1}{8a{(1-{k}_{A})}^{2}(1+{r}_{F})}\\&\quad\left\{\left(v-{k}_{A}\left(\left(1+{r}_{F}\right)c+{p}_{p}^{Ns}\right)\right)\left[v-{k}_{A}\left(\left(1+{r}_{F}\right)c+{p}_{p}^{Ns}\right)+4(1-{k}_{A})\right.\right. \\ &\quad \left.\left.\left({p}_{p}^{Ns}-\frac{(1+{r}_{F})\left(v+{k}_{A}\left(\left(1+{r}_{F}\right)c+{p}_{p}^{Ns}\right)\right)}{2{k}_{A}}\right)\right]\right\},\end{aligned}$$

the first-order and second-order derivative of the platform profit with respect to the charge are

$$\begin{aligned}&\frac{\partial {\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {p}_{p}^{Ns}}\\&\quad=\frac{2v+{k}_{A}^{2}(c+3{p}_{p}^{Ns}-(c+2{p}_{p}^{Ns}){r}_{F}-2c{r}_{F}^{2})+{k}_{A}(-3v-2{p}_{p}^{Ns}+2(c+{p}_{p}^{Ns}){r}_{F}+2c{r}_{F}^{2})}{4a{(-1+{k}_{A})}^{2}(1+{r}_{F})},\end{aligned}$$
(B5)
$$\frac{{\partial }^{2}{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {\left({p}_{p}^{Ns}\right)}^{2}}=\frac{{k}_{A}^{2}\left(3-2{r}_{F}\right)-2{k}_{A}(1-{r}_{F})}{4a{(1-{k}_{A})}^{2}(1+{r}_{F})}.$$
(B6)

(1.1.1) When \({k}_{A}<\frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(\frac{{\partial }^{2}{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {\left({p}_{p}^{Ns}\right)}^{2}}<0\), and at the point

$${p}_{p}^{Ns{\ddag} }=\frac{2v-c{k}_{A}^{2}(-1+{r}_{F}+2{r}_{F}^{2})+{k}_{A}(-3v+2c{r}_{F}(1+{r}_{F}))}{{k}_{A}(2\left(1-{r}_{F}\right)-{k}_{A}(3-2{r}_{F}))},$$

there is \(\frac{\partial {\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {p}_{p}^{Ns}}=0\). Since

$${p}_{p}^{Ns{\ddag} }-\left(\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right)=\frac{2\left(1-{k}_{A}\right)\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\left(3-2{r}_{F}\right)\right)}>0,$$

the optimal charge of the platform is \(\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\). (1.1.2) when \({k}_{A}=\frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(\frac{\partial {\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {p}_{p}^{Ns}}=\frac{2c+3v{r}_{F}-2(c+v){r}_{F}^{2}}{2a(1+{r}_{F})}>0\). In the interval of

$$\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c,$$

the optimal charge is likewise \(\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), and

$${\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right)={\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right)=0,$$

Thus, when \({k}_{A}\le \frac{2(1-{r}_{F})}{3-2{r}_{F}}\), the optimal charge for the platform over the entire defined domain is

$${p}_{p}^{Ns*}=\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right].$$

(1.1.3) When \({k}_{A}>\frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(\frac{{\partial }^{2}{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {\left({p}_{p}^{Ns}\right)}^{2}}>0\), and thus the optimal charge is

$$\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right),{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right]$$

in the interval of \(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), the globally optimal decision is also

$$\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right].$$

Next, we provide further analysis of the optimal decision for the platform.

$$\begin{aligned}&{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\\&\quad=\frac{B}{2{c}^{2}{k}_{A}}\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})\right.,\end{aligned}$$

and denote that \(G\left({k}_{A}\right)=-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)\). For \(B\le \frac{2{c}^{2}}{a\left(3-2{r}_{F}\right)}\), \(\frac{\partial G\left({k}_{A}\right)}{\partial {k}_{A}}\le 0\), thus \(G\left({k}_{A}\right)\le G\left(0\right)=-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}<0\). The optimal charge of the platform over the entire definition domain is \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\). When \(B>\frac{2{c}^{2}}{a\left(3-2{r}_{F}\right)}\), \(\frac{\partial G\left({k}_{A}\right)}{\partial {k}_{A}}>0\) and \(G\left(1\right)=\left(aB-2{c}^{2}\right)\left(1+{r}_{F}\right)-2vc{r}_{F}\). If \(B\le \frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\), \(G\left({k}_{A}\right)<G\left(1\right)<0\) and \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), moreover, \(\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}>\frac{2{c}^{2}}{a\left(3-2{r}_{F}\right)}\) obviously holds. If \(B>\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\), there exists a threshold \(\frac{2aB+2cv{r}_{F}-2aB{r}_{F}^{2}}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\), and \(\frac{2aB+2cv{r}_{F}-2aB{r}_{F}^{2}}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\in \left(0,1\right)\). For \({k}_{A}\le \frac{2aB+2cv{r}_{F}-2aB{r}_{F}^{2}}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\), \(G\left({k}_{A}\right)\le 0\), and \(G\left({k}_{A}\right)>0\) if \({k}_{A}>\frac{2aB+2cv{r}_{F}-2aB{r}_{F}^{2}}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\). What’s more \(\frac{2aB+2cv{r}_{F}-2aB{r}_{F}^{2}}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\) is derived with respect to \(B\) to obtain \(\frac{2ac(-2c-3v{r}_{F}+2(c+v){r}_{F}^{2})}{(1+{r}_{F}){(-3aB+2{c}^{2}+2aB{r}_{F})}^{2}}\), thus \(\frac{2aB+2cv{r}_{F}-2aB{r}_{F}^{2}}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\) is a decreasing function of \(B\).

(1.2)\(B>\frac{vc}{a\left(1+{r}_{F}\right)}\). Similar to (1.1), the best choice of the platform on each interval is as follows: when \({p}_{p}^{Ns}>\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), \({\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)=0\) and set \({p}_{p}^{Ns}=\frac{v}{{k}_{A}}\). When \({p}_{p}^{Ns}\le \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), \(D=\frac{v}{a\left(1+{r}_{F}\right)}\), \({\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)=\frac{v(2{p}_{p}^{Ns}-v-2v{r}_{F})}{2a(1+{r}_{F})}\), \({\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)\) is an increasing function of \({p}_{p}^{Ns}\), and thus the platform charge is \({p}_{p}^{Ns}=\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), moreover \({\Pi }_{p}^{Ns}\left(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right)=\frac{v({k}_{A}(3v-2c(1+{r}_{F})-2v{r}_{F})-2v)}{2a{k}_{A}(1+{r}_{F})}\). When \(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c<{p}_{p}^{Ns}\le \frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\), the solution process is similar to case (1.1), more specifically, (1.2.1) when \({k}_{A}\le \frac{2(1-{r}_{F})}{3-2{r}_{F}}\), the globally optimal decision is

$${p}_{p}^{Ns*}=\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right].$$

Furthermore,

$${\Pi }_{p}^{Ns}\left(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right)=\frac{v({k}_{A}(3v-2c(1+{r}_{F})-2v{r}_{F})-2v)}{2a{k}_{A}(1+{r}_{F})}=\frac{vH\left({k}_{A}\right)}{2a{k}_{A}(1+{r}_{F})}.$$

If \({k}_{A}\le \frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(H\left(0\right)<0\) and \(H\left(\frac{2(1-{r}_{F})}{3-2{r}_{F}}\right)=\frac{2c(2c+3v{r}_{F}-2(c+v){r}_{F}^{2})}{-3+2{r}_{F}}<0\), thus \({p}_{p}^{As*}=\frac{v}{{k}_{A}}\). (1.2.2) When \({k}_{A}>\frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(\frac{{\partial }^{2}{\Pi }_{p}^{Ns}\left({p}_{p}^{Ns}\right)}{\partial {\left({p}_{p}^{Ns}\right)}^{2}}>0\), the globally optimal decision is likewise

$$\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right].$$

\(H\left(1\right)=-c(2c-v+2(c+v){r}_{F})\), in general, \({r}_{F}\approx 0.05<0.5\), \(H\left(1\right)\) is an increasing function of \(v\). Moreover, if \(v\le \frac{2c(1+{r}_{F})}{1-2{r}_{F}}\), \(H\left(1\right)\le 0\), and thus \(H\left({k}_{A}\right)<0\) holds constantly,

$$\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right]=\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c.$$

If \(\frac{2c(1+{r}_{F})}{1-2{r}_{F}}<v<a\left(1+{r}_{F}\right)\), \(H\left(1\right)>0\), there exists a threshold \(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\) such that \(H\left(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\right)=0\). And in the case that \(\frac{2(1-{r}_{F})}{3-2{r}_{F}}<{k}_{A}<\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\), \(H\left({k}_{A}\right)\le 0\), therefore

$$\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right]=\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c.$$

If \(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\), \(H\left({k}_{A}\right)>0\),

$$\begin{aligned}&\mathrm{argmax}\left[{\Pi }_{p}^{Ns}\left(\frac{v}{{k}_{A}}\right),{\Pi }_{p}^{Ns}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)\right]\\ &\quad =\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c. \end{aligned}$$

Since \(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\) is a decreasing function of \(v\), if \(v\le \frac{2c(1+{r}_{F})}{1-2{r}_{F}}\), we have \(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\notin \left(\mathrm{0,1}\right)\).

In summary, the optimal charge for the platform over the entire defined domain is the following result.

(1.a) When \(B\le \mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right)\), or both \(B>\frac{cv}{a(1+{r}_{F})}\) and \(v\le \frac{2c(1+{r}_{F})}{1-2{r}_{F}}\) are valid at the same time, \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}\), \({p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\); \({\Pi }_{p}^{Ns*}={CS}^{Ns*}=0\); \({\Pi }_{s}^{Ns*}=\left(1+{r}_{F}\right)B\); \({SW}^{Ns*}=\left(1+{r}_{F}\right)B\).

(1.b) When \(\mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right)<B\le \frac{cv}{a(1+{r}_{F})}\), the optimal strategies of PSSC, the equilibrium market demand and the equilibrium profits or utility of each subject are shown in Eqs. (B7)–(B13).

$${p}_{p}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c,& \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B7)
$${p}_{s}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B8)
$${D}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B}{c}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B9)
$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}},& \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B10)
$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}\left(1+{r}_{F}\right)B ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}},& \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B11)
$$\begin{aligned}&{CS}^{Ns*}\\ &\;=\left\{\begin{array}{ll}0 , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{1}{a}{\int }_{0}^{\frac{v-{k}_{A}{p}_{s}^{Ns*}}{\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}}\left[v+{k}_{A}\left(1+{r}_{F}\right){x}_{i}-{k}_{A}{p}_{s}^{Ns*}-\left(1+{r}_{F}\right){x}_{i}\right]d{x}_{i} & \\ \quad =\frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}},& \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.\end{aligned}$$
(B12)
$${SW}^{Ns*}=\left\{\begin{array}{ll}\left(1+{r}_{F}\right)B , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left[2{r}_{F}\left(aB\left(1+{r}_{F}\right)-cv\right)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B13)

(1.c) When \(B>\frac{cv}{a(1+{r}_{F})}\) and \(v>\frac{2c(1+{r}_{F})}{1-2{r}_{F}}\), the equilibrium results are shown in Eqs. (B14)–(B20).

$${p}_{p}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B14)
$${p}_{s}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ {v}^{+},& \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B15)
$${D}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{v}{a\left(1+{r}_{F}\right)}, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B16)
$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{v\left({k}_{A}\left(3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}\right)-2v\right)}{2a{k}_{A}\left(1+{r}_{F}\right)}, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B17)
$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}\left(1+{r}_{F}\right)B , &0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{a{k}_{A}\left(1+{r}_{F}\right)}+(1+{r}_{F})B,& \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B18)
$${CS}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{2a\left(1+{r}_{F}\right)}, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B19)
$${SW}^{Ns*}=\left\{\begin{array}{ll}\left(1+{r}_{F}\right)B ,& 0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{v\left(v\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)-2c\left(1+{r}_{F}\right)\right)}{2a\left(1+{r}_{F}\right)}+(1+{r}_{F})B,& \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$
(B20)

The results of Proposition 1 can be obtained by further sorting.□

1.2.2 Proof of Proposition 2

The maximized profit for the seller is.

$$\left\{\begin{array}{ll}\mathrm{max }&{\Pi }_{s}^{As}\left({p}_{s}^{As}\right)=\left({p}_{s}^{As}-{p}_{p}^{As}\right)D-\left(1+{r}_{s}\right)\left(cD-B\right)\\ s.t. &cD\ge B\end{array}\right..$$
(B21)

First, the financial constraint is not considered. According to the piecewise demand function, we consider the cases of \({p}_{s}^{As}\le v\), \(v<{p}_{s}^{As}\le \frac{v}{{k}_{A}}\), respectively. When\({p}_{s}^{As}\le v\), the seller’s pricing decision is\({p}_{s}^{As}=v\). When\(v<{p}_{s}^{As}\le \frac{v}{{k}_{A}}\), given the platform charge, the seller’s price response function is

$${p}_{s}^{As}\left({p}_{p}^{As}\right)=\mathrm{max}\left[\mathrm{min}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2},\frac{v}{{k}_{A}}\right),v\right]=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &{p}_{p}^{As}>\frac{v}{{k}_{A}}-\left(1+{r}_{s}\right)c\\ \frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2},& \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{s}\right)c<{p}_{p}^{As}\le \frac{v}{{k}_{A}}-\left(1+{r}_{s}\right)c\\ v , &{p}_{p}^{As}\le \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{s}\right)c\end{array}\right..$$

Second, consider the capital constraint. When \({p}_{s}^{As}=v\), the constraint is satisfied. When \({p}_{s}^{As}>v\), the constraint can be reduced to \({p}_{s}^{As}\le \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\).

Thus, the seller’s response function after considering the financial constraint is as follows.

(i) When \(B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\ge v\). The seller’s price response function can be further expressed as

$$\begin{aligned}&{p}_{s}^{As}\left({p}_{p}^{As}\right)\\&\;=\left\{\begin{array}{ll}argmax\left({\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right),{\Pi }_{s}^{As}\left({v}^{-}\right)\right), &{p}_{p}^{As}>\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\\ argmax\left({\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right),{\Pi }_{s}^{As}\left({v}^{-}\right)\right), &\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{s}\right)c<{p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\\ argmax\left({\Pi }_{s}^{As}\left({v}^{+}\right),{\Pi }_{s}^{As}\left({v}^{-}\right)\right) , &{p}_{p}^{As}\le \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{s}\right)c\end{array}\right..\end{aligned}$$
(B22)

Next, we further simplify Eq. (B22). (a)

$${\Pi }_{s}^{As}\left({v}^{+}\right)=\left[v-{p}_{p}^{As}-\left(1+{r}_{s}\right)c\right]\frac{v}{a\left(1+{r}_{F}\right)}+\left(1+{r}_{s}\right)B\le {\Pi }_{s}^{As}\left({v}^{-}\right)=v-{p}_{p}^{As}-\left(1+{r}_{s}\right)c+\left(1+{r}_{s}\right)B,$$

that is \(\mathrm{argmax}\left({\Pi }_{s}^{As}\left({v}^{+}\right),{\Pi }_{s}^{As}\left({v}^{-}\right)\right)={v}^{-}\). (b)

$${\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}-{p}_{p}^{As}\right)\frac{B}{c},$$
$$\frac{\partial }{\partial {p}_{p}^{As}}\left({\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\right)=1-\frac{B}{c}>0,$$

and

$$\frac{\partial }{\partial B}\left({\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\right)=\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}-{p}_{p}^{As}\right)\frac{1}{c}<0,$$

thus if

$${p}_{p}^{As}>\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$
$${\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)>\frac{(1-{k}_{A})(aB(B-2c)(1+{r}_{F})+{c}^{2}v)}{{c}^{2}{k}_{A}}$$

holds, and further, if \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\),

$${\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)>\frac{\left(1-{k}_{A}\right)\left(aB\left(B-2c\right)\left(1+{r}_{F}\right)+{c}^{2}v\right)}{{c}^{2}{k}_{A}}>0,$$

while \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), there exists a point \({p}_{p}^{As{\ddag} }\) which satisfies

$${p}_{p}^{As{\ddag} }=\frac{B(aB(1+{r}_{F})(1-{k}_{A})-cv)+{k}_{A}{c}^{2}(v-(c-B)(1+{r}_{s}))}{(c-B)c{k}_{A}}>\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$

and for

$$\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}<{p}_{p}^{As}\le {p}_{p}^{As{\ddag} },$$

there is

$${\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\le {\Pi }_{s}^{As}\left({v}^{-}\right),$$

for \({p}_{p}^{As}>{p}_{p}^{As{\ddag} }\), \({\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)>{\Pi }_{s}^{As}\left({v}^{-}\right)\) is obtained. (c)

$${\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)=\frac{{\left(v-{k}_{A}\left(\left(1+{r}_{s}\right)c+{p}_{p}^{As}\right)\right)}^{2}}{4a\left(1-{k}_{A}\right){k}_{A}\left(1+{r}_{F}\right)}+\left(1+{r}_{s}\right)B,$$

and

$$\frac{\partial }{\partial {p}_{p}^{As}}\left({\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\right)=1-\frac{v-{k}_{A}({p}_{p}^{As}+\left(1+{r}_{s}\right)c)}{2a(1-{k}_{A})(1+{r}_{F})},$$
$$\frac{\partial }{\partial {\left({p}_{p}^{As}\right)}^{2}}{\left({\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\right)}^{2}=\frac{{k}_{A}}{2a(1-{k}_{A})(1+{r}_{F})}>0,$$

therefore,

$$\frac{\partial }{\partial {p}_{p}^{As}}\left({\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\right)>1-\frac{v}{a\left(1+{r}_{F}\right)}>0,$$

that is \({\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\) is an increasing function of \({p}_{p}^{As}\). If \({p}_{p}^{As}=\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{s}\right)c\), we have

$${\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)=-\frac{v\left(1-{k}_{A}\right)\left(a-v+a{r}_{F}\right)}{a{k}_{A}\left(1+{r}_{F}\right)}<0;$$

if

$${p}_{p}^{As}=\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$
$${\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)=\frac{\left(1-{k}_{A}\right)\left(aB\left(B-2c\right)\left(1+{r}_{F}\right)+{c}^{2}v\right)}{{c}^{2}{k}_{A}}.$$

If \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), \(\frac{\left(1-{k}_{A}\right)\left(aB\left(B-2c\right)\left(1+{r}_{F}\right)+{c}^{2}v\right)}{{c}^{2}{k}_{A}}\ge 0\) holds, by the Zero Theorem, there exists a unique point

$${p}_{p}^{As{\dag}}=\frac{v-2a(1+{r}_{F})(1-{k}_{A})\left(1-\sqrt{1-\frac{v}{a(1+{r}_{F})}}\right)-{k}_{A}c(1+{r}_{s})}{{k}_{A}}$$

such that in case

$${p}_{p}^{As{\dag}}\le {p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$
$${\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)\ge 0$$

is got; in case \(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{s}\right)c<{p}_{p}^{As}<{p}_{p}^{As{\dag}}\), \({\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)<0\). While \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), then \(\frac{\left(1-{k}_{A}\right)\left(aB\left(B-2c\right)\left(1+{r}_{F}\right)+{c}^{2}v\right)}{{c}^{2}{k}_{A}}<0\), thus we have

$${\Pi }_{s}^{As}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2}\right)-{\Pi }_{s}^{As}\left({v}^{-}\right)<0.$$

From the above analysis we can obtain the following simplification of Eq. (B22).

When \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), the seller’s optimal price response function is

$${p}_{s}^{As}\left({p}_{p}^{As}\right)=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& {p}_{p}^{As}>\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\\ \frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2},& {p}_{p}^{As{\dag}}<{p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\\ {v}^{-} , &{p}_{p}^{As}\le {p}_{p}^{As{\dag}}\end{array}\right..$$
(B23)

When \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), the seller’s optimal price response function is

$${p}_{s}^{As}\left({p}_{p}^{As}\right)=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& {p}_{p}^{As}>{p}_{p}^{As{\ddag} }\\ {v}^{-} ,& {p}_{p}^{As}\le {p}_{p}^{As{\ddag} }\end{array}.\right.$$
(B24)

(ii) When \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\), \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}<v\), and thus we have

$$\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}<v\le \mathrm{max}\left[\mathrm{min}\left(\frac{v}{2{k}_{A}}+\frac{{p}_{p}^{As}+\left(1+{r}_{s}\right)c}{2},\frac{v}{{k}_{A}}\right),v\right],{p}_{s}^{As}\left({p}_{p}^{As}\right)={v}^{-}.$$

Based on the seller’s response function, we can examine the optimal charge. The profit function of the platform is

$${\Pi }_{p}^{As}\left({p}_{p}^{As}\right)={p}_{p}^{As}D+{\int }_{i\in S}\left[\mathrm{min}\left[{p}_{s}^{As},\left(1+{r}_{F}\right){x}_{i}\right]-\left(1+{r}_{F}\right){p}_{s}^{As}\right]f\left({x}_{i}\right)d{x}_{i}+\left({r}_{s}-{r}_{F}\right)\left(cD-B\right).$$
(B25)

Similar to Proposition 1, we first examine the optimal choice of the platform over different charging intervals, and then find its optimal charging decision over the entire defined domain.

(2.1) \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\). If

$${p}_{p}^{As}>\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$
$${\Pi }_{p}^{As}\left({p}_{p}^{As}\right)=\frac{B(2c{k}_{A}{p}_{p}^{As}+2(1+{r}_{F})(aB\left(1+{r}_{F}\right)-cv)-aB{k}_{A}(1+3{r}_{F}+2{r}_{F}^{2}))}{2{c}^{2}{k}_{A}}.$$

In order make the seller participate in platform operation, the charge needs to satisfy the condition

$${\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}-{p}_{p}^{As}\right)\frac{B}{c}\ge 0,$$

i.e., \({p}_{p}^{As}\le \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\), and thus the charge is \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\); if

$${p}_{p}^{As{\dag}}<{p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$
$$\begin{aligned}&{\Pi }_{p}^{As}\left({p}_{p}^{As}\right)=\frac{1}{8a{(1-{k}_{A})}^{2}{k}_{A}(1+{r}_{F})}\\ &\quad\left\{\begin{array}{l}{k}_{A}{\left(v-{k}_{A}\left(c\left(1+{r}_{s}\right)+{p}_{p}^{As}\right)\right)}^{2}+2\left(1-{k}_{A}\right)\left(-v+{k}_{A}\left(c\left(1+{r}_{s}\right)+{p}_{p}^{As}\right)\right)\\ \left[v\left(1+{r}_{F}\right)+{k}_{A}\left[-{p}_{p}^{As}\left(1-{r}_{F}\right)+c\left(1+{r}_{F}\right)\left(1+{r}_{s}\right)\right]\right]\\ +8(1-{k}_{A}){k}_{A}({r}_{F}-{r}_{s})\left[aB(1-{k}_{A})(1+{r}_{F})+\frac{1}{2}c\left(-v+{k}_{A}(c\left(1+{r}_{s}\right)+{p}_{p}^{As}\right)\right]\end{array}\right\}.\end{aligned}$$

The first-order and second-order derivatives of platform’s profit with respect to the charge are Eqs. (B26) and (B27), respectively.

$$\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As}\right)}{\partial {p}_{p}^{As}}=\frac{2v+{k}_{A}^{2}(c+3{p}_{p}^{As}+3c{r}_{s}-2{r}_{F}(2c+{p}_{p}^{As}+c{r}_{s}))+{k}_{A}(-3v-2{p}_{p}^{As}-2c{r}_{s}+2{r}_{F}(2c+{p}_{p}^{As}+c{r}_{s}))}{4a{(-1+{k}_{A})}^{2}(1+{r}_{F})},$$
(B26)
$$\frac{{\partial }^{2}{\Pi }_{p}^{As}\left({p}_{p}^{As}\right)}{\partial {\left({p}_{p}^{As}\right)}^{2}}=\frac{{k}_{A}^{2}\left(3-2{r}_{F}\right)-2{k}_{A}(1-{r}_{F})}{4a{(1-{k}_{A})}^{2}(1+{r}_{F})}.$$
(B27)

(2.1.1) When \({k}_{A}<\frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(\frac{{\partial }^{2}{\Pi }_{p}^{As}\left({p}_{p}^{As}\right)}{\partial {\left({p}_{p}^{As}\right)}^{2}}<0\), and at the point

$${p}_{p}^{As \Delta }=\frac{2v+c{k}_{A}^{2}(1+3{r}_{s}-2{r}_{F}(2+{r}_{s}))+{k}_{A}(-3v-2c{r}_{s}+2c{r}_{F}(2+{r}_{s}))}{{k}_{A}(2-2{r}_{F}-{k}_{A}(3-2{r}_{F}))},$$

there is \(\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As}\right)}{\partial {p}_{p}^{As}}=0\), besides,

$$\begin{aligned}&{p}_{p}^{As \Delta }-\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{s}\right)}{c{k}_{A}}\\&\quad=\frac{2\left(1-{k}_{A}\right)\left(2aB+cv{r}_{F}-2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(-3aB+{c}^{2}+2aB{r}_{F}\right)\right)}{c{k}_{A}\left(2-2{r}_{F}+{k}_{A}\left(-3+2{r}_{F}\right)\right)}\\&\quad\ge \frac{2\left(1-{k}_{A}\right)\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{{k}_{A}\left(2-2{r}_{F}+{k}_{A}\left(-3+2{r}_{F}\right)\right)}>0,\end{aligned}$$

and thus the optimal charge is \(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\); (2.1.2) when \({k}_{A}=\frac{2(1-{r}_{F})}{3-2{r}_{F}}\),

$$\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As}\right)}{\partial {p}_{p}^{As}}=\frac{2c+3v{r}_{F}-2(c+v){r}_{F}^{2}}{2a(1+{r}_{F})}>0,$$

in the interval of

$${p}_{p}^{As{\dag}}<{p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}},$$

the optimal charge of the platform is likewise \(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\); (2.1.3) when \({k}_{A}>\frac{2(1-{r}_{F})}{3-2{r}_{F}}\), \(\frac{{\partial }^{2}{\Pi }_{p}^{As}\left({p}_{p}^{As}\right)}{\partial {\left({p}_{p}^{As}\right)}^{2}}>0\), the optimal charge is

$$\mathrm{argmax}\left[{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right),{\Pi }_{p}^{As}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}(1+{r}_{s})}{c{k}_{A}}\right)\right].$$

If \({p}_{p}^{As}\le {p}_{p}^{As{\dag}}\),

$$\begin{aligned}{\Pi }_{p}^{As}\left({p}_{p}^{As}\right)&={p}_{p}^{As}-\left(1+{r}_{F}\right)v+{\int }_{0}^{\frac{v}{1+{r}_{F}}}\left(1+{r}_{F}\right){x}_{i}f\left({x}_{i}\right)d{x}_{i}+{\int }_{\frac{v}{1+{r}_{F}}}^{a}vf\left({x}_{i}\right)d{x}_{i}\\&\quad+\left({r}_{s}-{r}_{F}\right)\left(c-B\right)={p}_{p}^{As}+\left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right),\end{aligned}$$

\({\Pi }_{p}^{As}\left({p}_{p}^{As}\right)\) is an increasing function of \({p}_{p}^{As}\) and thus \({p}_{p}^{As}={p}_{p}^{As{\dag}}\).

In summary, the optimal charge of the platform over the entire definition domain is

$${p}_{p}^{As*}=\mathrm{argmax}\left[{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right),{\Pi }_{p}^{As}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{s}\right)}{c{k}_{A}}\right),{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right].$$

Since

$${\Pi }_{p}^{As}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{s}\right)}{c{k}_{A}}\right)=\frac{B(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}(3aB-2{c}^{2}+aB{r}_{F}-2aB{r}_{F}^{2}-2{c}^{2}{r}_{s}))}{2{c}^{2}{k}_{A}},$$
$${\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=\frac{B(aB{k}_{A}(1-{r}_{F}-2{r}_{F}^{2})-2{r}_{F}(cv-aB\left(1+{r}_{F}\right)))}{2{c}^{2}{k}_{A}},$$

we can easily get

$${\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{s}\right)}{c{k}_{A}}\right)=\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)+{k}_{A}{c}^{2}\left(1+{r}_{s}\right)\right)}{{c}^{2}{k}_{A}}>0.$$

While

$${\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)=\left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{v-2a(1-{k}_{A})(1+{r}_{F})\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}(1+{r}_{s})}{{k}_{A}},$$
$$\begin{aligned}&{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\\&\quad=\frac{B(aB{k}_{A}(1-{r}_{F}-2{r}_{F}^{2})-2{r}_{F}(cv-aB\left(1+{r}_{F}\right)))}{2{c}^{2}{k}_{A}}-(B-c-v){r}_{F}+\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}\\&\qquad+B{r}_{s}-c{r}_{s}-\frac{v-2a(1-{k}_{A})(1+{r}_{F})\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}(1+{r}_{s})}{{k}_{A}},\end{aligned}$$

and

$$\frac{\partial }{\partial {k}_{A}}\left({\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\right)=\frac{-a{B}^{2}{r}_{F}^{2}+{c}^{2}\left[v-2a\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)\right]+{r}_{F}\left[-a{B}^{2}+Bcv-2a{c}^{2}\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)\right]}{{c}^{2}{k}_{A}^{2}},$$

denote that

$${\mathcalligra{l}}\left(B\right)=-a{r}_{F}\left(1+{r}_{F}\right){B}^{2}+cv{r}_{F}B+{c}^{2}\left[v-2a\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)\right]-2a{c}^{2}{r}_{F}\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right),$$

then

$$\frac{\partial }{\partial {k}_{A}}\left({\Pi }_{p}^{As}\left(\frac{c\left(v-c{k}_{A}\right)-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\right)$$

has the same sign as \({\mathcalligra{l}}\left(B\right)\). \(\frac{\partial {\mathcalligra{l}}\left(B\right)}{\partial B}={r}_{F}\left(cv-2aB\left(1+{r}_{F}\right)\right)\), \({\mathcalligra{l}}\left(B\right)\) is a concave function of \(B\). According to the discriminant of quadratic roots,

$${c}^{2}{v}^{2}{r}_{F}^{2}+4a{c}^{2}{r}_{F}\left(1+{r}_{F}\right)\left(v-2a\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)\right)\le 0,$$

and thus \({\mathcalligra{l}}\left(B\right)\le 0\) holds constantly, i.e., \({\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\) is a decreasing function of \({k}_{A}\). Since

$$\begin{aligned}&\underset{{k}_{A}\to 0}{\mathrm{lim}}\left[{\Pi }_{p}^{As}\left(\frac{c\left(v-c{k}_{A}\right)-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\right]\\&\quad=\underset{{k}_{A}\to 0}{\mathrm{lim}}\left[\frac{a{B}^{2}(1-{r}_{F}-2{r}_{F}^{2})}{2{c}^{2}}-\left(B-c-v\right){r}_{F}+\frac{{v}^{2}}{2a+2a{r}_{F}}+B{r}_{s}\right. \\ &\qquad\left. -c{r}_{s}-\frac{1}{{c}^{2}{k}_{A}}\left({\mathcalligra{l}}\left(B\right)-{k}_{A}\left(2a\left(1+{r}_{F}\right)-c(1+{r}_{s})\right)\right)\right]\\&\quad=+\infty \gg 0,\end{aligned}$$

there exists \({\tilde{k}}_{A}>0\) such that if

$${k}_{A}<\mathrm{min}\left({\tilde{k}}_{A},1\right), {\Pi }_{p}^{As}\left(\frac{c\left(v-c{k}_{A}\right)-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)>0,$$

and if

$$\mathrm{min}\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1,{\Pi }_{p}^{As}\left(\frac{c\left(v-c{k}_{A}\right)-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)<0.$$

Therefore, when \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), the equilibrium results are shown in Eqs. (B28)–(B34).

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {p}_{p}^{As{\dag}},& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B28)
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {v}^{-} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B29)
$${D}^{As*}=\left\{\begin{array}{ll}\frac{B}{c},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ 1 , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B30)
$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} ,& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{v-2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}\left(1+{r}_{s}\right)}{{k}_{A}}, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B31)
$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ v-\frac{v}{{k}_{A}}+\frac{2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)}{{k}_{A}}+B\left(1+{r}_{s}\right), &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B32)
$${CS}^{As*}=\left\{\begin{array}{ll}\frac{1}{a}{\int }_{0}^{\frac{v-{k}_{A}{p}_{s}^{As*}}{\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}}\left[v+{k}_{A}\left(1+{r}_{F}\right){x}_{i}-{k}_{A}{p}_{s}^{As*}-\left(1+{r}_{F}\right){x}_{i}\right]d{x}_{i}=\frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}} , &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{1}{a}{\int }_{0}^{\frac{{p}_{s}^{As*}}{1+{r}_{F}}}\left[v+{k}_{A}\left(1+{r}_{F}\right){x}_{i}-{k}_{A}{p}_{s}^{As*}-\left(1+{r}_{F}\right){x}_{i}\right]d{x}_{i}+\frac{1}{a}{\int }_{\frac{{p}_{s}^{As*}}{1+{r}_{F}}}^{a}\left[v+\left(1+{r}_{F}\right){x}_{i}-{p}_{s}^{As*}-\left(1+{r}_{F}\right){x}_{i}\right]d{x}_{i}=\frac{{v}^{2}\left(1-{k}_{A}\right)}{2a\left(1+{r}_{F}\right)},& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B33)
$${SW}^{As*}=\left\{\begin{array}{ll}\frac{B\left[2{r}_{F}\left(aB\left(1+{r}_{F}\right)-cv\right)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}{k}_{A}}{2a\left(1+{r}_{F}\right)} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B34)

(2.2) \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\). If

$${p}_{p}^{As}>{p}_{p}^{As{\ddag} },{\Pi }_{p}^{As}\left({p}_{p}^{As}\right)=\frac{B(2c{k}_{A}{p}_{p}^{As}+2(1+{r}_{F})(aB\left(1+{r}_{F}\right)-cv)-aB{k}_{A}(1+3{r}_{F}+2{r}_{F}^{2}))}{2{c}^{2}{k}_{A}},$$

to make the seller participate in the platform operation, the platform charge needs to satisfy the condition that \({\Pi }_{s}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\ge 0\), i.e., \({p}_{p}^{As}\le \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\), and thus the platform’s charge is \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\). When \({p}_{p}^{As}\le {p}_{p}^{As{\ddag} }\), its charging strategy is \({p}_{p}^{As{\ddag} }\).

The optimal charge of the platform over the whole definition domain is

$$\mathrm{argmax}\left[{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right),{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right].$$

Where

$${\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)=(B-c-v){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{B(aB(1+{r}_{F})(1-{k}_{A})-cv)+{k}_{A}{c}^{2}(v-(c-B)(1+{r}_{s}))}{(c-B)c{k}_{A}},$$
$$\frac{\partial }{\partial {k}_{A}}\left({\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)\right)=\frac{B(aB\left(1+{r}_{F}\right)-cv)\left(c\left(1-{r}_{F}\right)+B{r}_{F}\right)}{(c-B){c}^{2}{k}_{A}^{2}}<0,$$

and

$$\underset{{k}_{A}\to 0}{\mathrm{lim}}\left[{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)\right]=+\infty \gg 0,$$

there exists a threshold \({\breve{k}}\) such that for

$${k}_{A}<\mathrm{min}\left({\breve{k}},1\right),{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)>0,$$

and for

$$\mathrm{min}\left({\breve{k}},1\right)\le {k}_{A}<1,{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)<0.$$

Therefore, when \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), the equilibrium results of each subject are shown in Eqs (B35)–(B41).

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {p}_{p}^{As{\ddag} } , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B35)
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {v}^{-} ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B36)
$${D}^{As*}=\left\{\begin{array}{ll}\frac{B}{c}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ 1, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$
(B37)
$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} , &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-cv\right)+{k}_{A}{c}^{2}\left(v-\left(c-B\right)\left(1+{r}_{s}\right)\right)}{\left(c-B\right)c{k}_{A}},& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.$$
(B38)
$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 , &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{B\left[\left(cv-aB\left(1+{r}_{F}\right)\right)\left(1-{k}_{A}\right)+{k}_{A}c\left(c-B\right)\left(1+{r}_{s}\right)\right]}{\left(c-B\right)c{k}_{A}},& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.$$
(B39)
$${CS}^{As*}=\left\{\begin{array}{ll}\frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{2a\left(1+{r}_{F}\right)} ,& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.$$
(B40)
$${SW}^{As*}=\left\{\begin{array}{ll}\frac{B\left[2{r}_{F}\left(aB\left(1+{r}_{F}\right)-cv\right)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}{k}_{A}}{2a\left(1+{r}_{F}\right)} ,& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.$$
(B41)

(2.3) \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\).

$${\Pi }_{p}^{As}\left({p}_{p}^{As}\right)={p}_{p}^{As}D+{\sum }_{i\in S}\left[\mathrm{min}\left[{p}_{s}^{As},\left(1+{r}_{F}\right){x}_{i}\right]-\left(1+{r}_{F}\right){p}_{s}^{As}\right]+\left({r}_{s}-{r}_{F}\right)\left(cD-B\right)={p}_{p}^{As}+(B-c-v){r}_{F}-\frac{{v}^{2}}{2a+2a{r}_{F}}-B{r}_{s}+c{r}_{s}.$$

The participation constraints of the seller is \({\Pi }_{s}^{As}\left({v}^{-}\right)=v-{p}_{p}^{As}-\left(1+{r}_{s}\right)\left(c-B\right)\ge 0\), that is \({p}_{p}^{As}\le v-\left(1+{r}_{s}\right)\left(c-B\right)\), and thus the optimal charge is \({p}_{p}^{As*}=v-\left(1+{r}_{s}\right)\left(c-B\right)\). The optimal strategy of the seller, the market equilibrium demand and the equilibrium profits or utility of each subject are \({p}_{s}^{As*}={v}^{-}\), \({D}^{As*}=1\), \({\Pi }_{p}^{As*}=B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}}{2a(1+{r}_{F})}\), \({\Pi }_{s}^{As*}=0\), \({CS}^{As*}=\frac{{v}^{2}(1-{k}_{A})}{2a(1+{r}_{F})}\), \({SW}^{As*}=B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}{k}_{A}}{2a(1+{r}_{F})}\), respectively.

The results of Proposition 2 can be obtained by further sorting.□

1.2.3 Proof of Proposition 3

Single buyer’s credit: obviously there is \(\frac{\partial {p}_{s}^{Ns*}}{\partial {k}_{A}}\le 0\); when

$$B\le \mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right),\frac{\partial {p}_{p}^{Ns*}}{\partial {k}_{A}}<0;$$

when

$$\mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right)<B\le \mathrm{max}\left(\mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right),\frac{cv}{2a(1+{r}_{F})}\right),\frac{\partial {p}_{p}^{Ns*}}{\partial {k}_{A}}<0$$

and the inequations

$$\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}>\frac{(2{k}_{A}-1)v}{{k}_{A}}>\frac{(2{k}_{A}-1)v}{{k}_{A}}-\left(1+{r}_{F}\right)c$$

holds. When

$$\mathrm{max}\left(\mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right),\frac{cv}{2a(1+{r}_{F})}\right)<B\le \frac{cv}{a(1+{r}_{F})},$$

we can get

$$\left\{\begin{array}{ll}\frac{\partial {p}_{p}^{Ns*}}{\partial {k}_{A}}<0, &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{\partial {p}_{p}^{Ns*}}{\partial {k}_{A}}>0, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.;$$

while \(B>\frac{cv}{a(1+{r}_{F})}\), there is

$$\left\{\begin{array}{ll}\frac{\partial {p}_{p}^{Ns*}}{\partial {k}_{A}}<0 ,& 0<{k}_{A}\le \min\left(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})},1\right)\\ \frac{\partial {p}_{p}^{Ns*}}{\partial {k}_{A}}>0 , &\min\left(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})},1\right)<{k}_{A}<1\end{array}\right..$$

Dual credit: \(\frac{\partial {p}_{s}^{As*}}{\partial {k}_{A}}\le 0\) obviously holds; when

$$B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})},\frac{\partial {p}_{p}^{As{\dag}}}{\partial {k}_{A}}=\frac{2a\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-v}{{k}_{A}^{2}}>0,$$

and thus we have

$$\left\{\begin{array}{ll}\frac{\partial {p}_{p}^{As*}}{\partial {k}_{A}}<0, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {p}_{p}^{As*}}{\partial {k}_{A}}>0, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.;$$

when

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)},\frac{\partial {p}_{p}^{As{\ddag} }}{\partial {k}_{A}}=\frac{B\left(cv-aB\left(1+{r}_{F}\right)\right)}{(c-B)c{k}_{A}^{2}}>0,$$

we get

$$\left\{\begin{array}{ll}\frac{\partial {p}_{p}^{As*}}{\partial {k}_{A}}<0,&0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {p}_{p}^{As*}}{\partial {k}_{A}}>0,&\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right..$$

By merging and organizing, we get the content of Proposition 3.□

1.2.4 Proof of Proposition 4

Single buyer’s credit: By collapsing, the equilibrium result of the platform and the seller in Proposition 1 can be further expressed as the following result.

When \(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\) and \(\frac{2c(1+{r}_{F})}{1-2{r}_{F}}<v<a\left(1+{r}_{F}\right)\), the equilibrium strategies are

$${p}_{p}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c, &\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c ,& B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.,$$
(B42)
$${p}_{s}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& \frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ {v}^{+} , &B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right..$$
(B43)

In other cases, we have \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}-\left(1+{r}_{F}\right)c\) and \({p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\).

Based on the above rearrangement results, we easily get that when conditions

$$\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)},\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1$$

and \(\frac{2c(1+{r}_{F})}{1-2{r}_{F}}<v<a\left(1+{r}_{F}\right)\)) are all met, \(B\) has an effect on the equilibrium results and \(\frac{\partial {p}_{p}^{Ns*}}{\partial B}<0\); \(\frac{\partial {p}_{s}^{Ns*}}{\partial B}<0\).

Dual credit: \(\frac{\partial {p}_{s}^{As*}}{\partial B}\le 0\) obviously holds. When \(B\le c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\), we have

$$\left\{\begin{array}{ll}\frac{\partial {p}_{p}^{As*}}{\partial B}<0,& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {p}_{p}^{As*}}{\partial B}=0, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right..$$
$$\frac{\partial {p}_{p}^{As{\ddag} }}{\partial B}=-\frac{(1-{k}_{A})(aB(B-2c)\left(1+{r}_{F}\right)+{c}^{2}v)}{{(B-c)}^{2}c{k}_{A}},$$

if

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)},\frac{\partial {p}_{p}^{As{\ddag} }}{\partial B}>0,$$

and we can get \({p}_{p}^{As{\ddag} }={p}_{p}^{As{\dag}}\) at the point

$$B=c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)},$$

when \(B=\frac{vc}{a\left(1+{r}_{F}\right)},\) \({p}_{p}^{As{\ddag} }=v-\left(1+{r}_{s}\right)c<v-\left(1+{r}_{s}\right)\left(c-B\right)\), and thus \({p}_{p}^{As{\dag}}\le {p}_{p}^{As{\ddag} }<v-\left(1+{r}_{s}\right)\left(c-B\right)\).

By combining and organizing, we get Proposition 4.□

1.2.5 Proof of Proposition 5

Single buyer’s credit: According to Proposition 1, when \({k}_{A}^{\varsigma }<{k}_{A}<1\), \({k}_{A}\) affects the equilibrium profits of the agents if

$$\mathrm{min}\left(\frac{cv}{a\left(1+{r}_{F}\right)},\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\right)<B\le \frac{cv}{a(1+{r}_{F})},$$

and

$$\frac{\partial {\Pi }_{p}^{Ns*}}{\partial {k}_{A}}=\frac{B(aB\left(1-{r}_{F}^{2}\right)+cv{r}_{F})}{{c}^{2}{k}_{A}^{2}}>0;$$
$$\frac{\partial {\Pi }_{s}^{Ns*}}{\partial {k}_{A}}=-\frac{a{B}^{2}\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}^{2}}<0;$$
$$\frac{\partial {CS}^{Ns*}}{\partial {k}_{A}}=-\frac{a{B}^{2}\left(1+{r}_{F}\right)}{2{c}^{2}}<0;$$
$$\frac{\partial {SW}^{Ns*}}{\partial {k}_{A}}=\frac{B\left(2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)-aB{k}_{A}^{2}(1+{r}_{F})\right)}{2{c}^{2}{k}_{A}^{2}},$$

when

$$\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}\le \sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)}},$$

there is \(\frac{\partial {SW}^{Ns*}}{\partial {k}_{A}}\ge 0\); when

$$\mathrm{max}\left(\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})},\sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)}}\right)<{k}_{A}<1,$$

there is \(\frac{\partial {SW}^{Ns*}}{\partial {k}_{A}}<0\). If \(B>\frac{cv}{a(1+{r}_{F})}\), then we have

$$\frac{\partial {\Pi }_{p}^{Ns*}}{\partial {k}_{A}}=\frac{{v}^{2}}{a{k}_{A}^{2}(1+{r}_{F})}>0;$$
$$\frac{\partial {\Pi }_{s}^{Ns*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{a{k}_{A}^{2}(1+{r}_{F})}<0;$$
$$\frac{\partial {CS}^{Ns*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a(1+{r}_{F})}<0;$$
$$\frac{\partial {SW}^{Ns*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<0.$$

Dual credit: If \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), we get

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}=\frac{B{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{{c}^{2}{k}_{A}^{2}}>0, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}=\frac{\partial {p}_{p}^{As*}}{\partial {k}_{A}}>0 , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

and

$${{\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)|}_{0<{k}_{A}<\mathrm{min}\left({\tilde{k}}_{A},1\right)}<{{\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)|}_{\mathrm{min}\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1}<{{\Pi }_{p}^{As*}\left({p}_{p}^{As{\dag}}\right)|}_{\mathrm{min}\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1},$$

thus\(\frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}>0\). The first order derivative of the seller’s profit with respect to \({k}_{A}\) is then

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{s}^{As*}}{\partial {k}_{A}}=0 , &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {\Pi }_{s}^{As*}}{\partial {k}_{A}}=-\frac{\partial {p}_{p}^{As{\dag}}}{\partial {k}_{A}}<0, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

moreover,

$$\frac{\partial {{\Pi }_{s}^{As*}|}_{\mathrm{min}\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1}}{\partial v}=\frac{(1-{k}_{A})\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)}{{k}_{A}\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}}>0,$$
$${{\Pi }_{s}^{As*}|}_{\mathrm{min}\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1}>B\left(1+{r}_{s}\right)\ge {{\Pi }_{s}^{As*}|}_{0<{k}_{A}<\mathrm{min}\left({\tilde{k}}_{A},1\right)}.$$

The first order derivative of consumer surplus with respect to \({k}_{A}\) is

$$\left\{\begin{array}{ll}\frac{\partial {CS}^{As*}}{\partial {k}_{A}}=-\frac{a{B}^{2}\left(1+{r}_{F}\right)}{2{c}^{2}}<0, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {CS}^{As*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<0 , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

and \(\mathrm{min}\left({\tilde{k}}_{A},1\right)\) is an discontinuous point and at this point

$${\frac{a{B}^{2}(1-{k}_{A})(1+{r}_{F})}{2{c}^{2}}|}_{{k}_{A}=\mathrm{min}\left({\tilde{k}}_{A},1\right)}<{\frac{{v}^{2}(1-{k}_{A})}{2a(1+{r}_{F})}|}_{{k}_{A}=\mathrm{min}\left({\tilde{k}}_{A},1\right)}.$$

The first order derivative of social welfare with respect to \({k}_{A}\) is

$$\left\{\begin{array}{ll}\frac{\partial {SW}^{As*}}{\partial {k}_{A}}=\frac{B\left(2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}^{2}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {SW}^{As*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<0 ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$

and \(\frac{\partial {SW}^{As*}}{\partial {k}_{A}}\ge 0\) when \(0<{k}_{A}\le \sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)}}\); when

$$\mathrm{min}\left(\sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)},}{\tilde{k}}_{A},1\right)<{k}_{A}<\mathrm{min}\left({\tilde{k}}_{A},1\right),\frac{\partial {SW}^{As*}}{\partial {k}_{A}}<0.$$

Due to\({{\Pi }_{p}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{-}}={{\Pi }_{p}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{+}}\), \({{\Pi }_{s}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{-}}<{{\Pi }_{s}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{+}}\)),

$${{CS}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{-}}<\frac{a(1-{\tilde{k}}_{A})(1+{r}_{F})}{2{c}^{2}}\frac{{c}^{2}{v}^{2}}{{\left(a\left(1+{r}_{F}\right)\right)}^{2}}=\frac{{v}^{2}(1-{\tilde{k}}_{A})}{2a(1+{r}_{F})}={{CS}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{+}},$$

thus \({{SW}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{-}}<{{SW}^{As*}|}_{{k}_{A}\to {{\tilde{k}}_{A}}^{+}}\), as long as

$${k}_{A}>\mathrm{ min}\left(\sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)},}{\tilde{k}}_{A},1\right),$$

we have \(\frac{\partial {SW}^{As*}}{\partial {k}_{A}}<0\).

If \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), we have

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}=\frac{B{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{{c}^{2}{k}_{A}^{2}}>0,& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}=\frac{\partial {p}_{p}^{As{\ddag} }}{\partial {k}_{A}}>0 , &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

and

$${{\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)|}_{0<{k}_{A}<\mathrm{min}\left({\breve{k}},1\right)}<{{\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)|}_{\mathrm{min}\left({\breve{k}},1\right)\le {k}_{A}<1}<{{\Pi }_{p}^{As*}\left({p}_{p}^{As{\ddag} }\right)|}_{\mathrm{min}\left({\breve{k}},1\right)\le {k}_{A}<1},$$

hence there is \(\frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}>0\) throughout the domain of definition; for the seller, we have

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{s}^{As*}}{\partial {k}_{A}}=0 , &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {\Pi }_{s}^{As*}}{\partial {k}_{A}}=-\frac{\partial {p}_{p}^{As{\ddag} }}{\partial {k}_{A}}<0, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

and similarly,

$$\left\{\begin{array}{ll}\frac{\partial {CS}^{As*}}{\partial {k}_{A}}=-\frac{a{B}^{2}\left(1+{r}_{F}\right)}{2{c}^{2}}<0, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {CS}^{As*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<0 ,& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,\mathrm{min}\left({\breve{k}},1\right)$$

is also the discontinuous point, and the first-order derivative of social welfare with respect to \({k}_{A}\) is

$$\left\{\begin{array}{ll}\frac{\partial {SW}^{As*}}{\partial {k}_{A}}=\frac{B\left(2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}^{2}},& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {SW}^{As*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<0 , &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

when \(0<{k}_{A}\le \sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)}}\), \(\frac{\partial {SW}^{As*}}{\partial {k}_{A}}\ge 0\); when

$${k}_{A}>\mathrm{min}\left(\sqrt{\frac{2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)}{aB\left(1+{r}_{F}\right)},}{\breve{k}},1\right),\frac{\partial {SW}^{As*}}{\partial {k}_{A}}<0.$$

If \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\), \(\frac{\partial {\Pi }_{p}^{As*}}{\partial {k}_{A}}=\frac{\partial {\Pi }_{s}^{As*}}{\partial {k}_{A}}=0\) and \(\frac{\partial {CS}^{As*}}{\partial {k}_{A}}=\frac{\partial {SW}^{As*}}{\partial {k}_{A}}=-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<0\).

By combining and organizing, we get Proposition 5.□

1.2.6 Proof of Proposition 6

Single buyer’s credit: According to Eqs. (B42) and (B43), we can obtain the equilibrium demand and the profits of each subject, and the results are as follows.

$${D}^{Ns*}=\left\{\begin{array}{ll}0 ,& B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{B}{c} , &\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ \frac{v}{a\left(1+{r}_{F}\right)} , &B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.$$
(B44)
$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 ,& B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{B\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}},& \frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ \frac{v\left({k}_{A}\left(3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}\right)-2v\right)}{2a{k}_{A}\left(1+{r}_{F}\right)} , &B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.$$
(B45)
$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}\left(1+{r}_{F}\right)B ,& B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{B\left(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}}, &\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{a{k}_{A}\left(1+{r}_{F}\right)}+\left(1+{r}_{F}\right)B, &B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.$$
(B46)
$$\begin{aligned}&{CS}^{Ns*}\\&\quad=\left\{\begin{array}{ll}0 , &B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{1}{a}{\int }_{0}^{\frac{v-{k}_{A}{p}_{s}^{Ns*}}{\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}}\left[v+{k}_{A}\left(1+{r}_{F}\right){x}_{i}-{k}_{A}{p}_{s}^{Ns*}-\left(1+{r}_{F}\right){x}_{i}\right]d{x}_{i},& B>\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}\end{array}\right.\\&\quad=\left\{\begin{array}{ll}0 ,& B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}}, &\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{2a\left(1+{r}_{F}\right)} ,& B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.\end{aligned}$$
(B47)
$${SW}^{Ns*}=\left\{\begin{array}{ll}\left(1+{r}_{F}\right)B , &B\le \frac{2c(v{r}_{F}+c{k}_{A}(1+{r}_{F}))}{a(1+{r}_{F})({k}_{A}(3-2{r}_{F})-2(1-{r}_{F}))}\\ \frac{B\left[2{r}_{F}\left(aB\left(1+{r}_{F}\right)-cv\right)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}},& \frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ \frac{v\left(v\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)-2c\left(1+{r}_{F}\right)\right)}{2a\left(1+{r}_{F}\right)}+\left(1+{r}_{F}\right)B , &B>\frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.$$
(B48)

In the other cases, we have \({\Pi }_{p}^{Ns*}={CS}^{Ns*}=0\); \({\Pi }_{s}^{Ns*}={SW}^{Ns*}=\left(1+{r}_{F}\right)B\).

According to the above results, \(B\) has an impact on platform profit as well as consumer surplus if and only if

$$\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)},$$

and

$$\frac{\partial {\Pi }_{p}^{Ns*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)-c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{{c}^{2}{k}_{A}}>0,$$

what’s more if

$$B=\frac{cv}{a\left(1+{r}_{F}\right)},\frac{B\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}}=\frac{v({k}_{A}(3v-2c(1+{r}_{F})-2v{r}_{F})-2v)}{2a{k}_{A}(1+{r}_{F})},$$

thus \(\frac{\partial {\Pi }_{p}^{Ns*}}{\partial B}\ge 0\). The first-order derivatives of seller’s profit and consumer surplus with respect to \(B\) are \(\frac{\partial {\Pi }_{s}^{Ns*}}{\partial B}=\frac{(2aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A})(1+{r}_{F})}{{c}^{2}{k}_{A}}>0\); \(\frac{\partial {CS}^{Ns*}}{\partial B}=\frac{aB\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}}>0\), and at the point \(B=\frac{cv}{a\left(1+{r}_{F}\right)}\), \(\frac{B\left(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}}=\frac{{v}^{2}\left(1-{k}_{A}\right)}{a{k}_{A}\left(1+{r}_{F}\right)}+(1+{r}_{F})B\); \(\frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}}=\frac{{v}^{2}(1-{k}_{A})}{2a(1+{r}_{F})}\), therefore \(\frac{\partial {\Pi }_{s}^{Ns*}}{\partial B}>0\), \(\frac{\partial {CS}^{Ns*}}{\partial B}\ge 0\). The first-order derivative of social welfare with respect to \(B\) is

$$\frac{\partial {SW}^{Ns*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left(2{r}_{F}+{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)\right)-cv{r}_{F}}{{c}^{2}{k}_{A}}>\frac{Ba\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)-c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{{c}^{2}{k}_{A}}>0.$$

When \(B>\frac{cv}{a\left(1+{r}_{F}\right)}\), \(B\) only has an effect on the seller’s profit as well as social welfare, and \(\frac{\partial {\Pi }_{s}^{Ns*}}{\partial B}=\frac{\partial {SW}^{Ns*}}{\partial B}=1+{r}_{F}>0\). When \(B=\frac{cv}{a\left(1+{r}_{F}\right)}\), \({\Pi }_{p}^{Ns*}, {\Pi }_{s}^{Ns*}, {CS}^{Ns*}, {SW}^{Ns*}\) are all continuous functions, and thus for \(B>\frac{2c\left(v{r}_{F}+c{k}_{A}\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)\left({k}_{A}\left(3-2{r}_{F}\right)-2\left(1-{r}_{F}\right)\right)}\), we have \(\frac{\partial {\Pi }_{s}^{Ns*}}{\partial B}>0\) and \(\frac{\partial {SW}^{Ns*}}{\partial B}>0\).

Dual credit: If \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), the first order derivative of the platform profit with respect to \(B\) is

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{p}^{As*}}{\partial B}=\frac{{r}_{F}\left(2aB-cv+2aB{r}_{F}\right)+aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)}{{c}^{2}{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {\Pi }_{p}^{As*}}{\partial B}={r}_{F}-{r}_{s}<0 ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right..$$

When \(0<{k}_{A}<\mathrm{min}\left({\tilde{k}}_{A},1\right)\), there exists \(\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}+2{r}_{F}(1-{k}_{A}))}\), and \(\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}+2{r}_{F}(1-{k}_{A}))}<c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\), if \(0<B<\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}+2{r}_{F}(1-{k}_{A}))}\), there is \(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}<0\), if \(B>\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}+2{r}_{F}(1-{k}_{A}))}\), \(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}>0\) holds. And given \(B\), \({\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)>{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\). Further, since \({\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\) is a decreasing function of \(B\), we can get

$${{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)|}_{B\le c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}}<{{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)|}_{c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}}<{{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)|}_{c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}}.$$

\(\frac{\partial {\Pi }_{s}^{As*}}{\partial B}\ge 0\) clearly holds and \({p}_{p}^{As{\ddag} }={p}_{p}^{As{\dag}}\) when \(B=c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\), and thus

$${{\Pi }_{s}^{As*}|}_{B={\left(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)}^{-}}<{{\Pi }_{s}^{As*}|}_{B={\left(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)}^{+}}.$$

Similarly, \(\frac{\partial {CS}^{As*}}{\partial B}\ge 0\) holds; while the first-order derivative of social welfare with respect to \(B\) is

$$\left\{\begin{array}{ll}\frac{\partial {SW}^{As*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left(2{r}_{F}+{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)\right)-cv{r}_{F}}{{c}^{2}{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \frac{\partial {SW}^{As*}}{\partial B}=1+{r}_{F}>0 ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

there exists

$$\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}\left(2-{k}_{A}-2{r}_{F}\right)+2{r}_{F})}<\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}+2{r}_{F}(1-{k}_{A}))},$$
$$\frac{\partial {SW}^{As*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left(2{r}_{F}+{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)\right)-cv{r}_{F}}{{c}^{2}{k}_{A}}<0$$

for \(0<B<\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}\left(2-{k}_{A}-2{r}_{F}\right)+2{r}_{F})}\), and

$$\frac{\partial {SW}^{As*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left(2{r}_{F}+{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)\right)-cv{r}_{F}}{{c}^{2}{k}_{A}}>0$$

if \(B>\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}\left(2-{k}_{A}-2{r}_{F}\right)+2{r}_{F})}\).

If \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), then we have

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{p}^{As*}}{\partial B}=\frac{{r}_{F}\left(2aB-cv+2aB{r}_{F}\right)+aB{k}_{A}(1-{r}_{F}-2{r}_{F}^{2})}{{c}^{2}{k}_{A}},&0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {\Pi }_{p}^{As*}}{\partial B}={r}_{F}-{r}_{s}-\frac{(1-{k}_{A})(aB(B-2c)\left(1+{r}_{F}\right)+{c}^{2}v)}{{(B-c)}^{2}c{k}_{A}},&\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

and within the range of \(0<{k}_{A}<\mathrm{min}\left({\breve{k}},1\right)\), due to \(B>c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}>\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}+2{r}_{F}(1-{k}_{A}))}\), we get \(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}>0\). And in the range of \(\mathrm{min}\left({\breve{k}},1\right)\le {k}_{A}<\) 1, the sign of \(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}\) is related to \(B\). Specifically, when

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B<c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left({r}_{s}-{r}_{F}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left({r}_{s}-{r}_{F}\right)\right)},$$

\(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}=\frac{{r}_{F}\left(2aB-cv+2aB{r}_{F}\right)+aB{k}_{A}(1-{r}_{F}-2{r}_{F}^{2})}{{c}^{2}{k}_{A}}<0\); while

$$B>c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left({r}_{s}-{r}_{F}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left({r}_{s}-{r}_{F}\right)\right)},$$

there is \(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}>0\). Since \({p}_{p}^{As{\ddag} }<v-\left(1+{r}_{s}\right)\left(c-B\right)\), the seller’s price is \({v}^{-}\) and thus we have

$${{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)|}_{c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}}<{{\Pi }_{p}^{As}\left({p}_{p}^{As*}\right)|}_{c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}}=B-c+v+\left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}<{{\Pi }_{p}^{As}\left({p}_{p}^{As*}\right)|}_{B>\frac{vc}{a\left(1+{r}_{F}\right)}}.$$

The first-order derivative of the seller’s profit with respect to \(B\) is

$$\left\{\begin{array}{ll}\frac{\partial {\Pi }_{s}^{As*}}{\partial B}=0 , &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {\Pi }_{s}^{As*}}{\partial B}=-\frac{\partial {p}_{p}^{As{\ddag} }}{\partial B}+1+{r}_{s},& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

there exists

$$c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)}.$$

Since \(\frac{\partial {p}_{p}^{As{\ddag} }}{\partial B}>0\) and \(1+{r}_{s}>{r}_{s}-{r}_{F}\), we get

$$c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)}>c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left({r}_{s}-{r}_{F}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left({r}_{s}-{r}_{F}\right)\right)}.$$

If

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B<c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)},$$

there is \(\frac{\partial {\Pi }_{s}^{As*}}{\partial B}=-\frac{\partial {p}_{p}^{As{\ddag} }}{\partial B}+1+{r}_{s}>0\); while

$$B>c-\frac{c\sqrt{\left(1-{k}_{A}\right)\left(a\left(1+{r}_{F}\right)-v\right)\left(a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)\right)}}{a\left(1+{r}_{F}\right)-{k}_{A}\left(a\left(1+{r}_{F}\right)-c\left(1+{r}_{s}\right)\right)},$$

\(\frac{\partial {\Pi }_{s}^{As*}}{\partial B}=-\frac{\partial {p}_{p}^{As{\ddag} }}{\partial B}+1+{r}_{s}<0\) holds. The first-order derivative of consumer surplus with respect to \(B\) is constant with \(\frac{\partial {CS}^{As*}}{\partial B}\ge 0\); while the first-order derivative of social welfare with respect to \(B\) is

$$\left\{\begin{array}{ll}\frac{\partial {SW}^{As*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left(2{r}_{F}+{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)\right)-cv{r}_{F}}{{c}^{2}{k}_{A}},& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{\partial {SW}^{As*}}{\partial B}=1+{r}_{F}>0 , &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

because

$$B>c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}>\frac{cv{r}_{F}}{a(1+{r}_{F})({k}_{A}\left(2-{k}_{A}-2{r}_{F}\right)+2{r}_{F})}$$

holds, we can get

$$\frac{\partial {SW}^{As*}}{\partial B}=\frac{Ba\left(1+{r}_{F}\right)\left(2{r}_{F}+{k}_{A}\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)\right)-cv{r}_{F}}{{c}^{2}{k}_{A}}>0,$$

and thus given \({k}_{A}\),\(\frac{\partial {SW}^{As*}}{\partial B}>0\).

If \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\), we have \(\frac{\partial {\Pi }_{p}^{As*}}{\partial B}>0;\frac{\partial {SW}^{As*}}{\partial B}>0;\frac{\partial {CS}^{As*}}{\partial B}\ge 0\).

By further simplifying and organizing, we get Proposition 6.□

1.2.7 Proof of Proposition 7

Before proceeding to the proof, we first compare the key demarcation points.

(3.1) \(\frac{cv}{a\left(1+{r}_{F}\right)}\) and \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\)

$$\frac{cv}{a\left(1+{r}_{F}\right)}-\left(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)=\frac{c\left(v+\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}-a\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)},$$

and the difference between them with respect to the second order derivative of \(v\) is

$$\frac{{\partial }^{2}}{\partial {v}^{2}}\left(\frac{cv}{a\left(1+{r}_{F}\right)}-\left(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\right)\right)=-\frac{ac\left(1+{r}_{F}\right)}{4{\left(a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)\right)}^{3/2}}<0,$$

and at points \(v=0=a\left(1+{r}_{F}\right)\), \(\frac{cv}{a\left(1+{r}_{F}\right)}-\left(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)=0\), and thus \(\frac{cv}{a\left(1+{r}_{F}\right)}>\left(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)\).

(3.2) \(\frac{cv}{a\left(1+{r}_{F}\right)}\) and \(\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\)

$$\frac{cv}{a\left(1+{r}_{F}\right)}-\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}=\frac{c\left(\left(1-2{r}_{F}\right)v-2c\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)},$$

in general \({r}_{F}\approx 0.05<0.5\), thus \(\frac{c\left(\left(1-2{r}_{F}\right)v-2c\left(1+{r}_{F}\right)\right)}{a\left(1+{r}_{F}\right)}\) is an increasing function of \(v\) and \(\frac{cv}{a\left(1+{r}_{F}\right)}\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\) for \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), otherwise, \(\frac{cv}{a\left(1+{r}_{F}\right)}>\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\).

(3.3) \(\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}\) and \(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\)

$$\frac{{\partial }^{2}}{\partial {v}^{2}}\left(\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}-\left(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\right)\right)=-\frac{ac\left(1+{r}_{F}\right)}{4{\left(a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)\right)}^{3/2}}<0,$$

and if \({r}_{F}<0.25\), which is a reasonable assumption,

$$\frac{\partial }{\partial v}\left(\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}-\left(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\right)\right)<-\frac{c\left(1-4{r}_{F}\right)}{2a\left(1+{r}_{F}\right)}<0,$$

and at points

$$v={v}^{r{\dag}}=\frac{a{r}_{F}(3+4{r}_{F})-a-8c{r}_{F}(1+{r}_{F})+(1+{r}_{F})\sqrt{a\left(a-8a{r}_{F}\left(1-2{r}_{F}\right)+16c{r}_{F}\right)}}{8{r}_{F}^{2}},$$

we have \(\frac{2({c}^{2}(1+{r}_{F})+cv{r}_{F})}{a(1+{r}_{F})}=\left(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\right)\), thus there is

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<\frac{cv}{a\left(1+{r}_{F}\right)}$$

if the range of \(\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}<v\le \mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)\) is met; and if

$$\mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)<v\le a\left(1+{r}_{F}\right),\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<\frac{cv}{a\left(1+{r}_{F}\right)}$$

holds.

We summarize the results of the above analysis in the following Table 2.

Table 2 Comparison of key demarcation points

Then, we compare the equilibrium strategies.

(3.a) \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\). (3.a.1) When \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), the equilibrium strategies of PSSC in buyer’s credit model are \({p}_{p}^{Ns*}={p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\), respectively, while the equilibrium strategies of both parties in the dual credit model are \({p}_{p}^{As*}=v-\left(1+{r}_{s}\right)\left(c-B\right)\) and \({p}_{s}^{As*}={v}^{-}\). Clearly \({p}_{p}^{Ns*}>{p}_{p}^{As*}\); \({p}_{s}^{Ns*}\ge {p}_{s}^{As*}\). (3.a.2) When \(v>\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), the equilibrium strategies in the buyer’s credit model are

$${p}_{p}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} ,& 0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}}, &0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ {v}^{+},& \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right..$$

And both sides’ equilibrium strategies in dual credit model are then \({p}_{p}^{As*}=v-\left(1+{r}_{s}\right)\left(c-B\right)\) and \({p}_{s}^{As*}={v}^{-}\). Clearly \({p}_{s}^{Ns*}\ge {p}_{s}^{As*}\), and we focus on the comparison of platform charges. Since \(\frac{v}{{k}_{A}}>v-\left(1+{r}_{s}\right)\left(c-B\right)\) and \(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c-\left(v-\left(1+{r}_{s}\right)\left(c-B\right)\right)\) is an increasing function of \({k}_{A}\), and at the point \({k}_{A}=\frac{v}{v-\left(1+{r}_{s}\right)B+c\left({r}_{s}-{r}_{F}\right)}\),\(\frac{\left(2{k}_{A}-1\right)v}{{k}_{A}}-\left(1+{r}_{F}\right)c=v-\left(1+{r}_{s}\right)\left(c-B\right)\), the comparison of equilibrium charges in two credit models is.

$$\left\{\begin{array}{ll}{p}_{p}^{Ns*}>{p}_{p}^{As*}, &otherwise\\ {p}_{p}^{Ns*}\le {p}_{p}^{As*},& \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\le {k}_{A}\le \max\left(\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})},\mathrm{min}\left(\frac{v}{v-\left(1+{r}_{s}\right)B+c\left({r}_{s}-{r}_{F}\right)},1\right)\right)\end{array}\right..$$
(B49)

(3.a.1) and (3.a.2) are combined and collated to obtain comparison results as

$$\left\{\begin{array}{ll}{p}_{p}^{Ns*}>{p}_{p}^{As*},& otherwise\\ {p}_{p}^{Ns*}\le {p}_{p}^{As*},& {k}_{A}^{\varsigma }\le {k}_{A}\le \max\left({k}_{A}^{\varsigma },\mathrm{min}\left(\frac{v}{v-\left(1+{r}_{s}\right)B+c\left({r}_{s}-{r}_{F}\right)},1\right)\right)\end{array}\right..$$
(B50)

(3.b) \(B\le \frac{vc}{a\left(1+{r}_{F}\right)}\). (3.b.1) When \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), according to Table 2, we can easily classify the equilibrium strategies in two credit models based on the size of seller’s capital. Specifically, if \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}; {p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\);

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {p}_{p}^{As{\dag}} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {v}^{-} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right..$$

Since \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}<\frac{v}{{k}_{A}}\),

$${p}_{p}^{As{\dag}}<{p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{s}\right)}{c{k}_{A}}<\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{F}\right)}{c{k}_{A}}<\frac{v}{{k}_{A}},$$

we can get \({p}_{p}^{Ns*}>{p}_{p}^{As*}\), while \({p}_{s}^{Ns*}>{p}_{s}^{As*}\) clearly holds. If \(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}; {p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\);

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {p}_{p}^{As{\ddag} } ,&\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {v}^{-} , &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right..$$
$${p}_{p}^{As{\ddag} }-\left(\frac{v}{{k}_{A}}-\left(1+{r}_{s}\right)c\right)=\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-cv\right)+{k}_{A}{c}^{2}v-\left(c-B\right)cv}{\left(c-B\right)c{k}_{A}}=\frac{\left(1-{k}_{A}\right)\left(a{B}^{2}\left(1+{r}_{F}\right)-{c}^{2}v\right)}{\left(c-B\right)c{k}_{A}}<0,$$

thus \({p}_{p}^{As{\ddag} }<\frac{v}{{k}_{A}}-\left(1+{r}_{s}\right)c<\frac{v}{{k}_{A}}\), and \({p}_{p}^{Ns*}>{p}_{p}^{As*}\) holds, \({p}_{s}^{Ns*}>{p}_{s}^{As*}\) still holds constant.

(3.b.2) When \(\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}<v\le \mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)\), if \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}; {p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\);

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {p}_{p}^{As{\dag}} ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {v}^{-} ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

The comparison results are the same as in case (3.b.1), i.e., \({p}_{p}^{Ns*}>{p}_{p}^{As*}\); \({p}_{s}^{Ns*}>{p}_{s}^{As*}\). If

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},$$

\({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}; {p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\);

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {p}_{p}^{As{\ddag} } ,& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {v}^{-} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

and similarly there are \({p}_{p}^{Ns*}>{p}_{p}^{As*}\) and \({p}_{s}^{Ns*}>{p}_{s}^{As*}\). If \(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\),

$${p}_{p}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.;$$
$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {p}_{p}^{As{\ddag} } ,& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ {v}^{-} ,&\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

obviously \({p}_{s}^{Ns*}>{p}_{s}^{As*}\), \(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}>\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\), and

$${p}_{p}^{As{\ddag} }-\left[\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right]=\frac{\left[aB\left(1+{r}_{F}\right)(2c-B)-{c}^{2}v\right]\left(1-{k}_{A}\right)}{(c-B)c{k}_{A}}-\left({r}_{s}-{r}_{F}\right)c,$$

since \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\), \(aB\left(1+{r}_{F}\right)\left(2c-B\right)-{c}^{2}v>0\) holds when

$$\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}<c+\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)},$$

i.e., \({p}_{p}^{As{\ddag} }-\left[\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right]\) is a decreasing function of \({k}_{A}\), and at the point \({k}_{A}=\frac{aB\left(2c-B\right)\left(1+{r}_{F}\right)-{c}^{2}v}{aB\left(2c-B\right)\left(1+{r}_{F}\right)-{c}^{2}v+{c}^{2}(c-B)\left({r}_{s}-{r}_{F}\right)}\), \({p}_{p}^{As{\ddag} }=\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\), therefore when \(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\), the comparison results of the equilibrium charges are

$$ \begin{aligned} & \left\{ {\begin{array}{*{20}l} {p_{p}^{{Ns*}} > p_{p}^{{As*}} ,} \hfill & {\quad {\text{otherwise}}} \hfill \\ {p_{p}^{{Ns*}} \le p_{p}^{{As*}} ,} \hfill & {\quad \frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}} < k_{A} \le {\text{max}}\left( {\frac{{aB\left( {2c - B} \right)\left( {1 + r_{F} } \right) - c^{2} v}}{{aB\left( {2c - B} \right)\left( {1 + r_{F} } \right) - c^{2} v + c^{2} \left( {c - B} \right)\left( {r_{s} - r_{F} } \right)}},\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}},{\text{min}}\left( {{\breve{k}} _{A} ,1} \right)} \right)} \hfill \\ \end{array} } \right. \\ & \quad = \left\{ {\begin{array}{*{20}l} {p_{p}^{{Ns*}} > p_{p}^{{As*}} ,} \hfill & {\quad {\text{otherwise}}} \hfill \\ {p_{p}^{{Ns*}} \le p_{p}^{{As*}} ,} \hfill & {\quad k_{A}^{\varsigma } < k_{A} \le {\text{max}}\left( {\frac{{aB\left( {2c - B} \right)\left( {1 + r_{F} } \right) - c^{2} v}}{{aB\left( {2c - B} \right)\left( {1 + r_{F} } \right) - c^{2} v + c^{2} \left( {c - B} \right)\left( {r_{s} - r_{F} } \right)}},k_{A}^{\varsigma } ,k_{A}^{\tau } } \right)} \hfill \\ \end{array} } \right.. \\ \end{aligned} $$
(B51)

(3.b.3) When \(\mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)<v\le a\left(1+{r}_{F}\right)\), if \(B\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\), \({p}_{p}^{Ns*}=\frac{v}{{k}_{A}}; {p}_{s}^{Ns*}=\frac{v}{{k}_{A}}\);

$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {p}_{p}^{As{\dag}} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {v}^{-} ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

there exists \({p}_{p}^{Ns*}>{p}_{p}^{As*}\); \({p}_{s}^{Ns*}>{p}_{s}^{As*}\). If

$$\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)},$$
$${p}_{p}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{Ns*}=\left\{\begin{array}{ll}\frac{v}{{k}_{A}} , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.;$$
$${p}_{p}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},&0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {p}_{p}^{As{\dag}},&\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.;$$
$${p}_{s}^{As*}=\left\{\begin{array}{ll}\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ {v}^{-} , &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$
$$\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}-v=\frac{\left(1-{k}_{A}\right)\left[cv-a\left(1+{r}_{F}\right)B\right]}{c{k}_{A}}>0,$$

so we have \({p}_{s}^{Ns*}\ge {p}_{s}^{As*}\). Since

$${p}_{p}^{As{\dag}}<{p}_{p}^{As}\le \frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{s}\right)}{c{k}_{A}}<\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-{k}_{A}{c}^{2}\left(1+{r}_{F}\right)}{c{k}_{A}}<\frac{v}{{k}_{A}},$$

the comparison results are

$$\left\{\begin{array}{ll}{p}_{p}^{Ns*}>{p}_{p}^{As*},& otherwise\\ {p}_{p}^{Ns*}\le {p}_{p}^{As*}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\le {k}_{A}\le \min\left({\tilde{k}}_{A},1\right)\end{array}\right.=\left\{\begin{array}{ll}{p}_{p}^{Ns*}>{p}_{p}^{As*}, &otherwise\\ {p}_{p}^{Ns*}\le {p}_{p}^{As*}, &{k}_{A}^{\varsigma }\le {k}_{A}\le \max\left({k}_{A}^{\varsigma },{k}_{A}^{\tau }\right)\end{array}\right..$$
(B52)

If \(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), the result of such case is shown in Eq. (B51).

Denote

$${k}_{A}^{\nu }=\left\{\begin{array}{ll}\max\left({k}_{A}^{\varsigma }{k}_{A}^{\tau }\right) , &\min\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right)<B\le \max\left(\mathrm{min}\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right),c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)\\ \max\left(\frac{aB\left(2c-B\right)\left(1+{r}_{F}\right)-{c}^{2}v}{aB\left(2c-B\right)\left(1+{r}_{F}\right)-{c}^{2}v+{c}^{2}\left(c-B\right)\left({r}_{s}-{r}_{F}\right)},{k}_{A}^{\varsigma },{k}_{A}^{\tau }\right), &\max\left(\mathrm{min}\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right),c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\right)<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\\ \max\left({k}_{A}^{\varsigma },\mathrm{min}\left(\frac{v}{v-\left(1+{r}_{s}\right)B+c\left({r}_{s}-{r}_{F}\right)},1\right)\right) , &B>\frac{vc}{a\left(1+{r}_{F}\right)}\end{array}\right.,$$

and summarizing the results of the above analysis, we can obtain Proposition 7.□

1.2.8 Proof of Proposition 8

(4.a) \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\). (4.a.1) When \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), \({\Pi }_{p}^{Ns*}=0\), \({\Pi }_{p}^{As*}=B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}}{2a(1+{r}_{F})}\), in the interval of

$$\frac{vc}{a\left(1+{r}_{F}\right)}<B<\mathrm{max}\left(\frac{{v}^{2}+2a(1+{r}_{F})(c-v+(c+v){r}_{F})}{2a{(1+{r}_{F})}^{2}},\frac{vc}{a\left(1+{r}_{F}\right)}\right),$$

\({\Pi }_{p}^{As*}<0\), and thus \({\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*}\), if

$$B>\mathrm{max}\left(\frac{{v}^{2}+2a(1+{r}_{F})(c-v+(c+v){r}_{F})}{2a{(1+{r}_{F})}^{2}},\frac{vc}{a\left(1+{r}_{F}\right)}\right),$$

we have \({\Pi }_{p}^{As*}>{\Pi }_{p}^{Ns*}\). (4.a.2) When \(v>\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\),

$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 , &0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{v\left({k}_{A}\left(3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}\right)-2v\right)}{2a{k}_{A}\left(1+{r}_{F}\right)}, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.,$$

\({\Pi }_{p}^{As*}=B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}}{2a(1+{r}_{F})}\).

$${\Pi }_{p}^{As*}>\frac{2av+2cv-2ac-{v}^{2}+2c\left(-2a+v\right){r}_{F}-2a(c+v){r}_{F}^{2}}{2a(1+{r}_{F})}=Z\left(v\right)$$

and \(Z\left(v\right)\) is a concave function of \(v\). \(Z\left(\frac{2c(1+{r}_{F})}{1-2{r}_{F}}\right)=\frac{c(1+{r}_{F})(a\left(1-2{r}_{F}\right)-4c{r}_{F})}{a{(1-2{r}_{F})}^{2}}\), \(Z\left(a\left(1+{r}_{F}\right)\right)=\frac{1}{2}a(1+{r}_{F})(1-2{r}_{F})\), if \({r}_{F}<0.5\), \(Z\left(\frac{2c(1+{r}_{F})}{1-2{r}_{F}}\right)>0, Z\left(a\left(1+{r}_{F}\right)\right)>0\), thus \(Z\left(v\right)>0\) holds, i.e., \({\Pi }_{p}^{As*}>0\), at which time \(\frac{{v}^{2}+2a(1+{r}_{F})(c-v+(c+v){r}_{F})}{2a{(1+{r}_{F})}^{2}}<\frac{vc}{a\left(1+{r}_{F}\right)}\). Besides, \(\frac{\partial {\Pi }_{p}^{Ns*}}{\partial {k}_{A}}>0\) and \({\Pi }_{p}^{Ns*}=0\) at \({k}_{A}=\frac{2v}{3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}}\), thus \({\Pi }_{p}^{Ns*}\ge 0\).

$${\Pi }_{p}^{As*}-\frac{v\left({k}_{A}\left(3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}\right)-2v\right)}{2a{k}_{A}\left(1+{r}_{F}\right)}>{\Pi }_{p}^{As*}-\frac{v\left(v-2c\left(1+{r}_{F}\right)-2v{r}_{F}\right)}{2a\left(1+{r}_{F}\right)}=P\left(v\right),$$

since \(P\left(v\right)\) is a concave function of \(v\), we can obtain

$$P\left(v\right)\ge \mathrm{max}\left(P\left(a\left(1+{r}_{F}\right)\right),P\left(\frac{2c(1+{r}_{F})}{1-2{r}_{F}}\right)\right)=\mathrm{max}\left(B(1+{r}_{F},{\Pi }_{p}^{As*}\right)>0,$$

so there is a inequation \({\Pi }_{p}^{As*}>{\Pi }_{p}^{Ns*}\).

Thus, the comparisons of platform profits in the two credit models are

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*}, &\frac{vc}{a\left(1+{r}_{F}\right)}<B<max\left(\frac{{v}^{2}+2a(1+{r}_{F})(c-v+(c+v){r}_{F})}{2a{(1+{r}_{F})}^{2}},\frac{vc}{a\left(1+{r}_{F}\right)}\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*}, &otherwise\end{array}\right..$$
(B53)

(4.b) \(B\le \frac{vc}{a\left(1+{r}_{F}\right)}\). (4.b.1) When \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), and further if \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), \({\Pi }_{p}^{Ns*}=0\);

$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} , &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{v-2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}\left(1+{r}_{s}\right)}{{k}_{A}},& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$
$$\frac{\partial {\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)}{\partial {k}_{A}}=\frac{{r}_{F}B(cv-aB\left(1+{r}_{F}\right))}{{c}^{2}{k}_{A}^{2}}>0$$

and

$$\underset{{k}_{A}\to 0}{\mathrm{lim}}{\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=-\infty \ll 0,$$

thus there exists \({\hat{k}}_{A}^{{\dag}}=\frac{2{r}_{F}(cv-aB\left(1+{r}_{F}\right)}{aB(1-{r}_{F}-2{r}_{F}^{2})}\) such that \({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=0\), meanwhile, for \({k}_{A}<{\hat{k}}_{A}^{{\dag}}\), \({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)<0\), and \({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)>0\) for \({k}_{A}>{\hat{k}}_{A}^{{\dag}}\). On the other hand,

$${\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)=\left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{v-2a(1-{k}_{A})(1+{r}_{F})\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}(1+{r}_{s})}{{k}_{A}},$$
$$\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)}{\partial {k}_{A}}=-\frac{v-2a(1+{r}_{F})+2a(1+{r}_{F})\sqrt{1-\frac{v}{a+a{r}_{F}}}}{{k}_{A}^{2}},$$
$$\frac{{\partial }^{2}{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)}{\partial {k}_{A}\partial v}=-\frac{1}{{k}_{A}^{2}}\left(1-\frac{1}{\sqrt{1-\frac{v}{a+a{r}_{F}}}}\right)>0,$$

thus,

$$\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)}{\partial {k}_{A}}>{\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)}{\partial {k}_{A}}|}_{v=0}=0,$$

i.e., \({\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\) is an increasing function of \({k}_{A}\), and \(\underset{{k}_{A}\to 0}{\mathrm{lim}}{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)=-\infty \ll 0\), so there exists

$${\hat{k}}_{A}=\frac{2a(1+{r}_{F})\left[v+2a(1+{r}_{F})\sqrt{1-\frac{v}{a(1+{r}_{F})}}-2a(1+{r}_{F})\right]}{-4{a}^{2}+2ac+{v}^{2}+4{a}^{2}\sqrt{1-\frac{v}{a(1+{r}_{F})}}+2a{r}_{F}^{2}\left[-B+c+v+2a\left(-1+\sqrt{1-\frac{v}{a(1+{r}_{F})}}\right)\right]+2aB{r}_{s}+2a{r}_{F}\left[-B+2c+v+4a\left(-1+\sqrt{1-\frac{v}{a(1+{r}_{F})}}\right)+B{r}_{s}\right]}>0$$

such that \({\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)=0\). And \({\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)<0\) for \({k}_{A}<{\hat{k}}_{A}\), while \({\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)>0\) if \({k}_{A}>{\hat{k}}_{A}\). Furthermore,

$$\frac{\partial {\hat{k}}_{A}}{\partial B}=\frac{2a(1+{r}_{F})\left[v+2a(1+{r}_{F})\sqrt{1-\frac{v}{a(1+{r}_{F})}}-2a(1+{r}_{F})\right]\left(2a{r}_{s}\left(1+{r}_{s}\right)-2a{r}_{F}\left(1+{r}_{F}\right)\right)}{{\left(-4{a}^{2}+2ac+{v}^{2}+4{a}^{2}\sqrt{1-\frac{v}{a(1+{r}_{F})}}+2a{r}_{F}^{2}(-B+c+v+2a(-1+\sqrt{1-\frac{v}{a(1+{r}_{F})}}))+2aB{r}_{s}+2a{r}_{F}(-B+2c+v+4a(-1+\sqrt{1-\frac{v}{a(1+{r}_{F})}})+B{r}_{s})\right)}^{2}},$$

and since \(v+2a\left(1+{r}_{F}\right)\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}-2a\left(1+{r}_{F}\right)\le 0\), with the assumption \({r}_{s}>{r}_{F}\), \(\frac{\partial {\hat{k}}_{A}}{\partial B}\le 0\) holds, i.e., \({\hat{k}}_{A}\) is a decreasing function of\(B\).

According to the definition of \({\tilde{k}}_{A}\), \({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)={\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\) if \({k}_{A}={\tilde{k}}_{A}\), thus when

$${\left({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\right)|}_{{k}_{A}={\tilde{k}}_{A}}=0,$$

the equation \({\hat{k}}_{A}^{{\dag}}={\hat{k}}_{A}={\tilde{k}}_{A}\) is right; when

$${\left({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\right)|}_{{k}_{A}={\tilde{k}}_{A}}>0,$$

we can get \({\hat{k}}_{A}^{{\dag}}<{\hat{k}}_{A}<{\tilde{k}}_{A}\); while

$${\left({\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)-{\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)\right)|}_{{k}_{A}={\tilde{k}}_{A}}<0,$$

there exists \({\tilde{k}}_{A}<{\hat{k}}_{A}<{\hat{k}}_{A}^{{\dag}}\).

Based on the above analysis, we can obtain the following results.

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*}, &0<{k}_{A}<\min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*},& \min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\le {k}_{A}<1\end{array}\right.$$
(B54)

If \(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), \({\Pi }_{p}^{Ns*}=0\);

$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} ,& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-cv\right)+{k}_{A}{c}^{2}\left(v-\left(c-B\right)\left(1+{r}_{s}\right)\right)}{\left(c-B\right)c{k}_{A}}, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$
$$\frac{\partial {\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)}{\partial {k}_{A}}=\frac{B(cv-aB\left(1+{r}_{F}\right))}{(c-B)c{k}_{A}^{2}}>0,$$

thus \({\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)\) is an increasing function of \({k}_{A}\) and \(\underset{{k}_{A}\to 0}{\mathrm{lim}}{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)=-\infty \ll 0\), so there exists

$${\check{k}}_{A}=\frac{2aB(1+{r}_{F})(aB-cv+aB{r}_{F})}{2{a}^{2}{B}^{2}+c\left(-B+c\right){v}^{2}-2a{c}^{2}\left(B-c+v\right)+2a\left(2a{B}^{2}+c\left({B}^{2}+2{c}^{2}-B\left(3c+v\right)\right)\right){r}_{F}+2a\left(a{B}^{2}+\left(B-c\right)c\left(B-c-v\right)\right){r}_{F}^{2}+2aBc(c-B){r}_{s}(1+{r}_{F})}>0$$

such that \({\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)=0\), and \({\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)\le 0\) for\(0<{k}_{A}\le \mathrm{min}\left({\check{k}}_{A},1\right)\), while \({\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)>0\) for \(\mathrm{min}\left({\check{k}}_{A},1\right)<{k}_{A}<1\). And given \(B\), by the definition of the optimal platform charge at this point, we have \({\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)<{\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)\) and thus

$${\check{k}}_{A}<{\hat{k}}_{A}\left(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\right).$$

Then by the monotonicity of \({\hat{k}}_{A}\), we can get \({\check{k}}_{A}<{\hat{k}}_{A}\).

Therefore, similar to the previous process, we can obtain the following results.

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*},& 0<{k}_{A}<\min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*},& \min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\le {k}_{A}<1\end{array}\right.$$
(B55)

(4.b.2) \(\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}<v\le \mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)\). The first case is\(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), which by the previous analysis yields

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*},& 0<{k}_{A}<\min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*}, &\min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\le {k}_{A}<1\end{array}\right..$$

Similarly, if

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},$$

\({\Pi }_{p}^{Ns*}=0\);

$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} ,& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-cv\right)+{k}_{A}{c}^{2}\left(v-\left(c-B\right)\left(1+{r}_{s}\right)\right)}{\left(c-B\right)c{k}_{A}}, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

the comparison result is \(\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*},& 0<{k}_{A}<\min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*}, &\min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\le {k}_{A}<1\end{array}\right.\). While \(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\),

$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.,$$
$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} , &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-cv\right)+{k}_{A}{c}^{2}\left(v-\left(c-B\right)\left(1+{r}_{s}\right)\right)}{\left(c-B\right)c{k}_{A}},& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

in the range of \(\mathrm{min}\left({\breve{k}},1\right)\le {k}_{A}<1\), we have

$${\Pi }_{p}^{As}\left({p}_{p}^{As{\ddag} }\right)>{\Pi }_{p}^{As*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)>{\Pi }_{p}^{Ns*}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right)$$

by the definition of optimal charge.

Thus, we can obtain the following results.

$$ \left\{ {\begin{array}{*{20}c} {{\Pi }_{p}^{{As{*}}} < {\Pi }_{p}^{Ns*} , 0 < k_{A} < \min\left( {k_{A} ,\hat{k}_{A}^{\dag } ,\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}},1} \right)} \\ {{\Pi }_{p}^{{As{*}}} \ge {\Pi }_{p}^{Ns*} , \min\left( {k_{A} ,\hat{k}_{A}^{\dag } ,\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}},1} \right) \le k_{A} < 1} \\ \end{array} } \right. $$
(B56)

(4.b.3) \(\mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)<v\le a\left(1+{r}_{F}\right)\). If \(B\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\), \({\Pi }_{p}^{Ns*}=0\);

$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} , &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{v-2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}\left(1+{r}_{s}\right)}{{k}_{A}},& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

thus we can obtain

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*}, &0<{k}_{A}<\min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*},& \min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right)\le {k}_{A}<1\end{array}\right..$$

If

$$\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)},$$
$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})\right)}{2{c}^{2}{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.,$$
$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} , &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{v-2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)-c{k}_{A}\left(1+{r}_{s}\right)}{{k}_{A}}, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

when \(\mathrm{min}\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\), by the definition we get

$${\Pi }_{p}^{As}\left({p}_{p}^{As{\dag}}\right)>{\Pi }_{p}^{As}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)>{\Pi }_{p}^{Ns*}\left(\frac{cv-2aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)}{c{k}_{A}}-\left(1+{r}_{F}\right)c\right),$$

and the comparison of platform charges results in

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*}, &0<{k}_{A}<\min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*},& \min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})},1\right)\le {k}_{A}<1\end{array}\right..$$

Finally, when \(c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\),

$${\Pi }_{p}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(-2aB-2cv{r}_{F}+2aB{r}_{F}^{2}+{k}_{A}\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)\right)}{2{c}^{2}{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.,$$
$${\Pi }_{p}^{As*}=\left\{\begin{array}{ll}\frac{B\left(aB{k}_{A}\left(1-{r}_{F}-2{r}_{F}^{2}\right)-2{r}_{F}\left(cv-aB\left(1+{r}_{F}\right)\right)\right)}{2{c}^{2}{k}_{A}} ,& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \left(B-c-v\right){r}_{F}-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}+{r}_{s}\left(c-B\right)+\frac{B\left(aB\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)-cv\right)+{k}_{A}{c}^{2}\left(v-\left(c-B\right)\left(1+{r}_{s}\right)\right)}{\left(c-B\right)c{k}_{A}}, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

it is clear that there are

$$\left\{\begin{array}{ll}{\Pi }_{p}^{As*}<{\Pi }_{p}^{Ns*}, &0<{k}_{A}<\min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})},1\right)\\ {\Pi }_{p}^{As*}\ge {\Pi }_{p}^{Ns*}, &\min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})},1\right)\le {k}_{A}<1\end{array}\right..$$

Let

$${k}_{A}^{\xi }=\left\{\begin{array}{ll}\min\left({\hat{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right),& B\le c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}\\ \min\left({\check{k}}_{A},{\hat{k}}_{A}^{{\dag}},1\right),& c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\end{array}\right.,$$

then the above results can be further organized as Proposition 8.□

1.2.9 Proof of Proposition 9

(5.a) \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\). (5.a.1) When \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\),\({\Pi }_{s}^{Ns*}=\left(1+{r}_{F}\right)B>0={\Pi }_{s}^{As*}\). (5.a.2) When \(v>\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\),

$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}(1+{r}_{F})B , &0<{k}_{A}\le \frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{a{k}_{A}\left(1+{r}_{F}\right)}+(1+{r}_{F})B, &\frac{2v}{v(3-2{r}_{F})-2c(1+{r}_{F})}<{k}_{A}<1\end{array}\right.$$

, \({\Pi }_{s}^{As*}=0\), \({\Pi }_{s}^{Ns*}>{\Pi }_{s}^{As*}\) holds constantly.

(5.b) \(B\le \frac{vc}{a\left(1+{r}_{F}\right)}\). (5.b.1) When \(v\le \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), if \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\) holds, \({\Pi }_{s}^{Ns*}=(1+{r}_{F})B\) and

$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ v-\frac{v}{{k}_{A}}+\frac{2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)}{{k}_{A}}+B\left(1+{r}_{s}\right), &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.$$

,

$$\frac{\partial {\Pi }_{s}^{As*}\left({v}^{-}\right)}{\partial v}=\frac{(1-{k}_{A})\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)}{{k}_{A}\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}}>0,$$

thus \({\Pi }_{s}^{As*}\left({v}^{-}\right)>B\left(1+{r}_{s}\right)>{\Pi }_{s}^{Ns*}\). The comparisons of the seller’s profit in the two models are

$$ \left\{ {\begin{array}{*{20}l} {{\Pi }_{s}^{As*} \ge {\Pi }_{s}^{Ns*} , } \hfill & {\quad \min\left( {\tilde{k}_{A} ,1} \right) \le k_{A} < 1} \hfill \\ {{\Pi }_{s}^{As*} < {\Pi }_{s}^{Ns*} , } \hfill & {\quad 0 < k_{A} < \min\left( {\tilde{k}_{A} ,1} \right)} \hfill \\ \end{array} } \right.. $$
(B57)

If \(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\), \({\Pi }_{s}^{Ns*}=(1+{r}_{F})B\) and

$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0,&0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{B\left[\left(cv-aB\left(1+{r}_{F}\right)\right)\left(1-{k}_{A}\right)+{k}_{A}c\left(c-B\right)(1+{r}_{s})\right]}{(c-B)c{k}_{A}},&\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

the seller’s profit comparison obviously results in

$$ \left\{ {\begin{array}{*{20}l} {\Pi _{s}^{{As*}} \ge \Pi _{s}^{{Ns*}} ,} \hfill & {\min \left( {{\breve{k}}_{A} ,1} \right) \le k_{A} < 1} \hfill \\ {\Pi _{s}^{{As*}} < \Pi _{s}^{{Ns*}} ,~} \hfill & {0 < k_{A} < \min \left( {{\breve{k}}_{A} ,1} \right)} \hfill \\ \end{array} } \right. $$

(5.b.2) When \(\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}<v\le \mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)\), if the seller’s capital satisfy \(B\le c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}\), then we have

$$\left\{\begin{array}{ll}{\Pi }_{s}^{As*}\ge {\Pi }_{s}^{Ns*}, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\\ {\Pi }_{s}^{As*}<{\Pi }_{s}^{Ns*}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\end{array}\right..$$

If

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<B\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}$$

is satisfied, \({\Pi }_{s}^{Ns*}=(1+{r}_{F})B\) and

$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 , &0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{B\left[\left(cv-aB\left(1+{r}_{F}\right)\right)\left(1-{k}_{A}\right)+{k}_{A}c\left(c-B\right)\left(1+{r}_{s}\right)\right]}{\left(c-B\right)c{k}_{A}},& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

the comparison results are the same as in (5.b.1). And when the condition \(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\) holds,

$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}(1+{r}_{F})B ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}},& \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.,$$
$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{B\left[\left(cv-aB\left(1+{r}_{F}\right)\right)\left(1-{k}_{A}\right)+{k}_{A}c\left(c-B\right)\left(1+{r}_{s}\right)\right]}{\left(c-B\right)c{k}_{A}}, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

since

$${\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=\frac{B\left\{\left(-aB\left(1-{k}_{A}\right)-{c}^{2}{k}_{A}\right)(1+{r}_{F})+\frac{c\left[\left(cv-aB\left(1+{r}_{F}\right)\right)\left(1-{k}_{A}\right)+{k}_{A}c\left(c-B\right)(1+{r}_{s})\right]}{(c-B)}\right\}}{{c}^{2}{k}_{A}},$$
$$\frac{\partial \left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right)}{\partial {k}_{A}}=\frac{B(aB(c(2+{r}_{F})-B)-{c}^{2}v)}{(c-B){c}^{2}{k}_{A}^{2}}$$

and

$$c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}<\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right],$$

then in the range of

$$\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right]<B\le \frac{cv}{a\left(1+{r}_{F}\right)}<\frac{1}{2}c\left[2+{r}_{F}+\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right],$$
$$\frac{\partial \left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right)}{\partial {k}_{A}}>0.$$

Moreover, due to the fact that

$${\left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right)|}_{{k}_{A}\to 0}=\frac{B({c}^{2}v-aB(c(2+{r}_{F})-B))}{(c-B){c}^{2}{k}_{A}}<0,$$

there exists a cut-off point \({k}_{A}^{\iota }\in \left(\mathrm{0,1}\right)\), for \({k}_{A}>{k}_{A}^{\iota }\), \({\Pi }_{s}^{As*}\left({v}^{-}\right)>{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\). And if \(B<\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right]\),

$$\frac{\partial \left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right)}{\partial {k}_{A}}<0,$$
$${\left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right)|}_{{k}_{A}\to 1}>0,$$

thus \({\Pi }_{s}^{As*}\left({v}^{-}\right)>{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\) holds.

Based on the above analysis, we can get the results of comparing seller’s profit in both models as follows: when

$$\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B<\mathrm{max}\left(\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right],\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\right),$$

, we get

$$\left\{\begin{array}{ll}{\Pi }_{s}^{As*}\ge {\Pi }_{s}^{Ns*}, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\\ {\Pi }_{s}^{As*}<{\Pi }_{s}^{Ns*}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\end{array}\right.;$$

when

$$\mathrm{max}\left(\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right],\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\right)<B\le \frac{cv}{a\left(1+{r}_{F}\right)},$$

then we have

$$ \left\{ {\begin{array}{*{20}c} {{\Pi }_{s}^{As*} \ge {\Pi }_{s}^{Ns*} , \min\left( {{\breve{k}}_{A} ,1} \right) \le k_{A} < \max\left( {{\text{min}}\left( {{\breve{k}}_{A} ,1} \right),\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}}} \right) or \max\left( {{\text{min}}\left( {{\breve{k}}_{A} ,1} \right),\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}},k_{A}^{\iota } } \right) \le k_{A} < 1} \\ {{\Pi }_{s}^{As*} < {\Pi }_{s}^{Ns*} , otherwise} \\ \end{array} } \right.. $$
(B58)

(5.b.3) When \(\mathrm{max}\left({v}^{r{\dag}},\frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\right)<v\le a\left(1+{r}_{F}\right)\), if \(B\le \frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}\), \({\Pi }_{s}^{Ns*}=(1+{r}_{F})B\) and

$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 , &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ v-\frac{v}{{k}_{A}}+\frac{2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)}{{k}_{A}}+B\left(1+{r}_{s}\right),& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

thus the comparison results are

$$\left\{\begin{array}{ll}{\Pi }_{s}^{As*}\ge {\Pi }_{s}^{Ns*}, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\\ {\Pi }_{s}^{As*}<{\Pi }_{s}^{Ns*}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\end{array}\right..$$

If

$$\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)}<B\le c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)},$$
$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}(1+{r}_{F})B ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}},& \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.,$$
$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\\ v-\frac{v}{{k}_{A}}+\frac{2a\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)\left(1-\sqrt{1-\frac{v}{a\left(1+{r}_{F}\right)}}\right)}{{k}_{A}}+B\left(1+{r}_{s}\right), &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\end{array}\right.,$$

and since

$${\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=v+B\left(1+{r}_{s}\right)-\frac{v+\frac{B(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A})(1+{r}_{F})}{{c}^{2}}-2a(1-{k}_{A})(1+{r}_{F})\left(1-\sqrt{1-\frac{v}{a+a{r}_{F}}}\right)}{{k}_{A}},$$

and

$$\frac{\partial \left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\right)}{\partial {k}_{A}}=\frac{{c}^{2}v+a(1+{r}_{F})\left({B}^{2}-2{c}^{2}\left(1-\sqrt{1-\frac{v}{a+a{r}_{F}}}\right)\right)}{{c}^{2}{k}_{A}^{2}},$$
$$\frac{{\partial }^{2}\left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{v}{{k}_{A}}\right)\right)}{\partial {k}_{A}\partial B}=\frac{2aB(1+{r}_{F})}{{c}^{2}{k}_{A}^{2}}>0,$$
$$\frac{\partial \left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{v}{{k}_{A}}\right)\right)}{\partial {k}_{A}}\le \frac{\partial \left({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{v}{{k}_{A}}\right)\right)}{\partial {k}_{A}}{|}_{B=c-\frac{c\sqrt{a\left(1+{r}_{F}\right)\left(a-v+a{r}_{F}\right)}}{a\left(1+{r}_{F}\right)}}=0,$$

we can conclude \({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)\) is a decreasing function of \({k}_{A}\). Since \({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)=B\left({r}_{s}-{r}_{F}\right)>0\) for \({k}_{A}=1\), \({\Pi }_{s}^{As*}\left({v}^{-}\right)-{\Pi }_{s}^{Ns*}\left(\frac{cv-a\left(1+{r}_{F}\right)\left(1-{k}_{A}\right)B}{c{k}_{A}}\right)>0\) is obtained. The comparison results are

$$\left\{\begin{array}{ll}{\Pi }_{s}^{As*}\ge {\Pi }_{s}^{Ns*}, &\min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1\\ {\Pi }_{s}^{As*}<{\Pi }_{s}^{Ns*}, &0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right)\end{array}\right..$$

If \(c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B\le \frac{vc}{a\left(1+{r}_{F}\right)}\),

$${\Pi }_{s}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left(aB\left(1-{k}_{A}\right)+{c}^{2}{k}_{A}\right)\left(1+{r}_{F}\right)}{{c}^{2}{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right.,$$
$${\Pi }_{s}^{As*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{B\left[\left(cv-aB\left(1+{r}_{F}\right)\right)\left(1-{k}_{A}\right)+{k}_{A}c\left(c-B\right)\left(1+{r}_{s}\right)\right]}{\left(c-B\right)c{k}_{A}},& \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

and according to the analysis of (5.b.2), we can obtain the following result: when

$$c-\frac{c\sqrt{a(1+{r}_{F})(a-v+a{r}_{F})}}{a(1+{r}_{F})}<B<\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right],$$

there are

$$\left\{\begin{array}{ll}{\Pi }_{s}^{As*}\ge {\Pi }_{s}^{Ns*}, &\min\left({\breve{k}},1\right)\le {k}_{A}<1\\ {\Pi }_{s}^{As*}<{\Pi }_{s}^{Ns*}, &0<{k}_{A}<\min\left({\breve{k}},1\right)\end{array}\right.;$$

when \(\frac{1}{2}c\left[2+{r}_{F}-\sqrt{\frac{{a(2+{r}_{F})}^{2}-4v}{a}}\right]<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\), the comparison results in Eq. (B58).

By rearranging all the above results, we get Proposition 9.□

1.2.10 Proof of Proposition 10

When \(B\le \frac{cv}{a(1+{r}_{F})}\),

$${CS}^{Ns*}\le \left\{\begin{array}{ll}0 , &0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}\le 1\end{array}\right.,$$
$${CS}^{As*}=\left\{\begin{array}{ll}\frac{a{B}^{2}\left(1-{k}_{A}\right)\left(1+{r}_{F}\right)}{2{c}^{2}},& 0<{k}_{A}<\min\left({\tilde{k}}_{A},1\right) or 0<{k}_{A}<\min\left({\breve{k}},1\right)\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{2a\left(1+{r}_{F}\right)} ,& \min\left({\tilde{k}}_{A},1\right)\le {k}_{A}<1 or \min\left({\breve{k}},1\right)\le {k}_{A}<1\end{array}\right.,$$

since \(0<\frac{a{B}^{2}(1-{k}_{A})(1+{r}_{F})}{2{c}^{2}}\le \frac{{v}^{2}(1-{k}_{A})}{2a(1+{r}_{F})}\), \({CS}^{As*}>{CS}^{Ns*}\) holds constant.

When \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\),

$${CS}^{Ns*}=\left\{\begin{array}{ll}0 ,& 0<{k}_{A}\le \min\left(\frac{2v}{3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}},1\right)\\ \frac{{v}^{2}\left(1-{k}_{A}\right)}{2a\left(1+{r}_{F}\right)},& \min\left(\frac{2v}{3v-2c\left(1+{r}_{F}\right)-2v{r}_{F}},1\right)<{k}_{A}<1\end{array}\right.;$$

\({CS}^{As*}=\frac{{v}^{2}(1-{k}_{A})}{2a(1+{r}_{F})}\), again with \({CS}^{As*}\ge {CS}^{Ns*}\).

In summary, \({CS}^{As*}>{CS}^{Ns*}\) holds constant.□

1.2.11 Proof of Proposition 11

(7.a) When \(B>\frac{vc}{a\left(1+{r}_{F}\right)}\) and

$$\begin{aligned}&v>\frac{2c(1+{r}_{F})}{1-2{r}_{F}},\\&{SW}^{Ns*}=\left\{\begin{array}{ll}(1+{r}_{F})B , &0<{k}_{A}\le {k}_{A}^{\varsigma }\\ \frac{v\left(v\left(2\left(1-{r}_{F}\right)-{k}_{A}\right)-2c\left(1+{r}_{F}\right)\right)}{2a\left(1+{r}_{F}\right)}+(1+{r}_{F})B,& {k}_{A}^{\varsigma }<{k}_{A}<1\end{array}\right.,\\&{SW}^{As*}=B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}{k}_{A}}{2a(1+{r}_{F})}.\end{aligned}$$

When \({k}_{A}^{\varsigma }<{k}_{A}<1\), \({SW}^{As*}-{SW}^{Ns*}\)= \(\frac{(a(1+{r}_{F})-v)(v\left(1-{r}_{F}\right)-c(1+{r}_{F}))}{a(1+{r}_{F})}>0\); while \(0<{k}_{A}\le {k}_{A}^{\varsigma }\), \({SW}^{As*}-{SW}^{Ns*}=v\left(1-{r}_{F}\right)-c\left(1+{r}_{F}\right)-\frac{{v}^{2}{k}_{A}}{2a(1+{r}_{F})}\). Since \(v>\frac{2c(1+{r}_{F})}{1-2{r}_{F}}\), there exist \(a\left(1+{r}_{F}\right)\ge \frac{2c(1+{r}_{F})}{1-2{r}_{F}}\), i.e., \(a\left(1-2{r}_{F}\right)\ge 2c\), \({SW}^{As*}-{SW}^{Ns*}=v\left(1-{r}_{F}\right)-c\left(1+{r}_{F}\right)-\frac{{v}^{2}{k}_{A}}{2a\left(1+{r}_{F}\right)}>v\left(1-{r}_{F}\right)-c\left(1+{r}_{F}\right)-\frac{{v}^{2}}{2a\left(1+{r}_{F}\right)}>0\).

(7.b) When \(B\le \mathrm{min}\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right)\), \({SW}^{Ns*}=(1+{r}_{F})B\) and

$${SW}^{As*}=\left\{\begin{array}{ll}\frac{B\left[2{r}_{F}\left(aB\left(1+{r}_{F}\right)-cv\right)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}},& 0<{k}_{A}<{k}_{A}^{\tau }\\ B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}{k}_{A}}{2a\left(1+{r}_{F}\right)} , &{k}_{A}^{\tau }\le {k}_{A}<1\end{array}\right..$$

If \(0<{k}_{A}<{k}_{A}^{\tau }\), \({SW}^{As*}-{SW}^{Ns*}=\frac{B\left[Ba\left(1+{r}_{F}\right)\left(-{k}_{A}^{2}+2{k}_{A}\left(1-{r}_{F}\right)+2{r}_{F}\right)-2{c}^{2}{k}_{A}(1+{r}_{F})-2cv{r}_{F}\right]}{2{c}^{2}{k}_{A}}\), and \(-{k}_{A}^{2}+2{k}_{A}\left(1-{r}_{F}\right)+2{r}_{F}>0\). Let \(M\left({k}_{A}\right)=Ba\left(1+{r}_{F}\right)\left(-{k}_{A}^{2}+2{k}_{A}\left(1-{r}_{F}\right)+2{r}_{F}\right)-2{c}^{2}{k}_{A}(1+{r}_{F})-2cv{r}_{F}\), \(M\left({k}_{A}\right)\) is a concave function of \({k}_{A}\), and \(M\left(0\right)=2{r}_{F}\left(Ba\left(1+{r}_{F}\right)-cv\right)<0\), \(M\left(1\right)=Ba\left(1+{r}_{F}\right)-2{c}^{2}\left(1+{r}_{F}\right)-2cv{r}_{F}<2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)-2{c}^{2}\left(1+{r}_{F}\right)-2cv{r}_{F}=0\), therefore, there exist two points \({k}_{A}^{{\mathcalligra{o}}1},{k}_{A}^{{\mathcalligra{o}}2}\),\(0<{k}_{A}^{{\mathcalligra{o}}1}<{k}_{A}^{{\mathcalligra{o}}2}<1\), such that \(M\left({k}_{A}\right)=0\) and if \(\mathrm{min}\left({k}_{A}^{\tau },{k}_{A}^{{\mathcalligra{o}}1}\right)<{k}_{A}<\mathrm{min}\left({k}_{A}^{\tau },{k}_{A}^{{\mathcalligra{o}}2}\right)\), \(M\left({k}_{A}\right)>0\) holds. Furthermore if \(v>\frac{2c(1+{r}_{F})}{1-2{r}_{F}}\), according to the analysis of (7.a), we can obtain the following results.

$$ \left\{ {\begin{array}{*{20}l} {SW^{As*} \le SW^{Ns*} , } \hfill & {\quad otherwise} \hfill \\ {SW^{As*} > SW^{Ns*} ,} \hfill & {\quad \min\left( {k_{A}^{\tau } ,k_{A}^{{\mathcalligra{o}}1} } \right) < k_{A} < \min\left( {k_{A}^{\tau } ,k_{A}^{{\mathcalligra{o}}2} } \right) or k_{A}^{\tau } \le k_{A} < 1} \hfill \\ \end{array} } \right. $$
(B59)

(7.c) When

$$\begin{aligned}&\mathrm{min}\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right)<B\le \frac{cv}{a\left(1+{r}_{F}\right)},\\&{SW}^{Ns*}=\left\{\begin{array}{ll}(1+{r}_{F})B ,& 0<{k}_{A}\le \frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\\ \frac{B\left[2{r}_{F}(aB\left(1+{r}_{F}\right)-cv)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}}, &\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}<{k}_{A}<1\end{array}\right., \\&{SW}^{As*}=\left\{\begin{array}{ll}\frac{B\left[2{r}_{F}\left(aB\left(1+{r}_{F}\right)-cv\right)+2{k}_{A}aB\left(1-{r}_{F}^{2}\right)-aB{k}_{A}^{2}\left(1+{r}_{F}\right)\right]}{2{c}^{2}{k}_{A}}, &0<{k}_{A}<{k}_{A}^{\tau }\\ B-c+v+(B-c-v){r}_{F}-\frac{{v}^{2}{k}_{A}}{2a\left(1+{r}_{F}\right)} , &{k}_{A}^{\tau }\le {k}_{A}<1\end{array}\right.\end{aligned},$$
$$\mathrm{min}\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right)<B\le \frac{cv}{a\left(1+{r}_{F}\right)}$$

is a non-empty set if and only if \(v\ge \frac{2c\left(1+{r}_{F}\right)}{1-2{r}_{F}}\), and at this point there must be \(v>\frac{2c(1+{r}_{F})}{2\left(1-{r}_{F}\right)-{k}_{A}}\). Further, when

$$0<{k}_{A}<\mathrm{min}\left({k}_{A}^{\tau },\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})}\right),$$
$${SW}^{As*}-{SW}^{Ns*}=\frac{B\left[Ba\left(1+{r}_{F}\right)\left(-{k}_{A}^{2}+2{k}_{A}\left(1-{r}_{F}\right)+2{r}_{F}\right)-2{c}^{2}{k}_{A}(1+{r}_{F})-2cv{r}_{F}\right]}{2{c}^{2}{k}_{A}},$$

\(M\left(0\right)=2{r}_{F}\left(Ba\left(1+{r}_{F}\right)-cv\right)<0\) and \(M\left(1\right)=Ba\left(1+{r}_{F}\right)-2{c}^{2}\left(1+{r}_{F}\right)-2cv{r}_{F}>0\). There exists the unique point \({k}_{A}^{{\mathcalligra{o}}1}\) such that \(M\left({k}_{A}\right)=0\), and \(M\left({k}_{A}\right)<0\) if

$$0<{k}_{A}<\mathrm{min}\left({k}_{A}^{\tau },\frac{2(aB+cv{r}_{F}-aB{r}_{F}^{2})}{(1+{r}_{F})(3aB-2{c}^{2}-2aB{r}_{F})},{k}_{A}^{{\mathcalligra{o}}1}\right),$$

and if

$${\text{min}}\left( {k_{A}^{\tau } ,\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}},k_{A}^{{\mathcalligra{o}}1} } \right) < k_{A} < {\text{min}}\left( {k_{A}^{\tau } ,\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}}} \right),M\left( {k_{A} } \right) > 0.$$

According to the definition of the optimal solution of platform profit function, as well as the functions of seller’s profit and consumer surplus, we can get \(SW^{As*} > SW^{Ns*}\) in the range of

$${\text{max}}\left( {k_{A}^{\tau } ,\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}}} \right) \le k_{A} < 1.$$

Thus, the results of comparing social welfare in the two models are

$$ \left\{ {\begin{array}{*{20}l} {SW^{As*} \ge SW^{Ns*} ,} \hfill & {\quad otherwise} \hfill \\ {SW^{As*} < SW^{Ns*} ,} \hfill & {\quad 0 < k_{A} < \min\left( {k_{A}^{\tau } ,\frac{{2\left( {aB + cvr_{F} - aBr_{F}^{2} } \right)}}{{\left( {1 + r_{F} } \right)\left( {3aB - 2c^{2} - 2aBr_{F} } \right)}},k_{A}^{{\mathcalligra{o}}1} } \right)} \hfill \\ \end{array} } \right.. $$
(B60)

Let

$${k}_{A}^{\upsilon }=\left\{\begin{array}{l}{k}_{A}^{\tau } , B\le \min\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right)\\ \min\left({k}_{A}^{\tau },\frac{2\left(aB+cv{r}_{F}-aB{r}_{F}^{2}\right)}{\left(1+{r}_{F}\right)\left(3aB-2{c}^{2}-2aB{r}_{F}\right)},{k}_{A}^{{\mathcalligra{o}}1}\right), \min\left(\frac{2\left({c}^{2}\left(1+{r}_{F}\right)+cv{r}_{F}\right)}{a\left(1+{r}_{F}\right)},\frac{vc}{a\left(1+{r}_{F}\right)}\right)<B\le \frac{cv}{a\left(1+{r}_{F}\right)}\\ 0 , B>\frac{vc}{a\left(1+{r}_{F}\right)}\end{array}\right.$$

, by further sorting and simplification, Proposition 11 is proved.□

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Xie, J., Zhu, W. et al. Pricing of platform service supply chain with dual credit: Can you have the cake and eat it?. Ann Oper Res 321, 589–661 (2023). https://doi.org/10.1007/s10479-022-04960-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04960-5

Keywords

Navigation