Skip to main content
Log in

Shortest path network interdiction with incomplete information: a robust optimization approach

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we consider a shortest path network interdiction problem with incomplete information and multiple levels of interdiction intensity. The evader knows the attacker’s decision on the network arcs that have been interdicted. However, the extent of damage on each arc depends on the interdiction intensity and the amount of budget spent for interdiction. We consider two cases in which the evader has incomplete information about both the intensity of attack on the interdicted arcs and the additional cost imposed for traversing those arcs. In the first case, the evader’s perception of this cost falls in an interval of uncertainty. In the second case, it is assumed that the evader estimates a relative frequency for each level of interdiction intensity. This gives rise to multiple uncertainty sets for the evader’s estimates of the additional cost. To handle the uncertainty that arises in both cases, a robust optimization approach is employed to derive the mathematical formulation of underlying bilevel optimization problem. For each case, we first take the well-known duality-based approach to reformulate the problem as a single-level model. We show that this method does not always end up with an integer solution or fails in achieving a solution within the time limit. Therefore, we develop an alternative algorithm based on the decomposition approach. Computational results show that the proposed algorithm outperforms the duality-based method to obtain the optimal solution. Last, a real case study is presented to show the applicability of the studied problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. "Department of Defense Dictionary of Military and Associated Terms," Joint Publication 1–02, Nov. 8, 2010 (As Amended Through Aug. 15, 2012), p. 96..

  2. https://www.whitehouse.gov/wp-content/uploads/2020/02/2020.

  3. https://www.drugpolicyfacts.org/chapter/interdiction.

  4. National Research Council. (1999). Assessment of two cost-effectiveness studies on cocaine control policy.

  5. Fiegel, B. (2021). Narco-drones: a new way to transport drugs. Criminal Drone Evolution: Cartel Weaponization of Aerial IEDS, 7.

  6. https://www.tasnimnews.com/en/news/2018/03/18/1684180/police-seize-400kg-of-hashish-in-iranian-capital.

  7. https://141.ir/.

References

  • Albert, L. A., Nikolaev, A., & Jacobson, S. H. (2022). Homeland security research opportunities. IISE Transactions, 55(1), 22–31.

    Article  Google Scholar 

  • Assimakopoulos, N. (1987). A network interdiction model for hospital infection control. Computers in Biology and Medicine, 17(6), 413–422.

    Article  Google Scholar 

  • Baycik, N. O., Sharkey, T. C., & Rainwater, C. E. (2018). Interdicting layered physical and information flow networks. IISE Transactions, 50(4), 316–331.

    Article  Google Scholar 

  • Baycik, N. O., & Sullivan, K. M. (2019). Robust location of hidden interdictions on a shortest path network. IISE Transactions, 51(12), 1332–1347.

    Article  Google Scholar 

  • Bayrak, H., & Bailey, M. D. (2008). Shortest path network interdiction with asymmetric information. Networks: An International Journal, 52(3), 133–140.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Bertsimas, D., & Thiele, A. (2006). Robust and data-driven optimization: modern decision making under uncertainty. In M. P. Johnson, B. Norman, N. Secomandi, P. Gray, & H. J. Greenberg (Eds.), Models, methods, and applications for innovative decision making (pp. 95–122). INFORMS. https://doi.org/10.1287/educ.1063.0022

    Chapter  Google Scholar 

  • Borrero, J. S., Prokopyev, O. A., & Sauré, D. (2015). Sequential shortest path interdiction with incomplete information. Decision Analysis, 13(1), 68–98.

    Article  Google Scholar 

  • Borrero, J. S., Prokopyev, O. A., & Sauré, D. (2019). Sequential interdiction with incomplete information and learning. Operations Research, 67(1), 72–89.

    Article  Google Scholar 

  • Brown, G., Carlyle, M., Salmerón, J., & Wood, K. (2006). Defending critical infrastructure. Interfaces, 36(6), 530–544.

    Article  Google Scholar 

  • Brown, G. G., Carlyle, W. M., Harney, R. C., Skroch, E. M., & Wood, R. K. (2009). Interdicting a nuclear-weapons project. Operations Research, 57(4), 866–877.

    Article  Google Scholar 

  • Cormican, K. J., Morton, D. P., & Wood, R. K. (1998). Stochastic network interdiction. Operations Research, 46(2), 184–197.

    Article  Google Scholar 

  • Fakhry, R., Hassini, E., Ezzeldin, M., & El-Dakhakhni, W. (2021). Tri-level mixed-binary linear programming: Solution approaches and application in defending critical infrastructure. European Journal of Operational Research, 298(3), 1114–1131.

    Article  Google Scholar 

  • Ghaffarinasab, N., & Atayi, R. (2018). An implicit enumeration algorithm for the hub interdiction median problem with fortification. European Journal of Operational Research, 267(1), 23–39.

    Article  Google Scholar 

  • Giommoni, L., Aziani, A., & Berlusconi, G. (2017). How do illicit drugs move across countries? A network analysis of the heroin supply to Europe. Journal of Drug Issues, 47(2), 217–240.

    Article  Google Scholar 

  • Goldberg, N. (2017). Non-zero-sum nonlinear network path interdiction with an application to inspection in terror networks. Naval Research Logistics (NRL), 64(2), 139–153.

    Article  Google Scholar 

  • Hemmecke, R., Schultz, R., & Woodruff, D. L. (2003). Interdicting stochastic networks with binary interdiction effort. In D. L. Woodruff (Ed.), Network interdiction and stochastic integer programming (pp. 69–84). Boston: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48109-X_4

    Chapter  Google Scholar 

  • Holzmann, T., & Smith, J. C. (2021). The shortest path interdiction problem with randomized interdiction strategies: Complexity and algorithms. Operations Research, 69(1), 82–99.

    Article  Google Scholar 

  • Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction. Networks An International Journal, 40(2), 97–111.

    Article  Google Scholar 

  • Jenelius, E., Petersen, T., & Mattsson, L. G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537–560.

    Google Scholar 

  • Lei, X., Shen, S., & Song, Y. (2018). Stochastic maximum flow interdiction problems under heterogeneous risk preferences. Computers & Operations Research, 90, 97–109.

    Article  Google Scholar 

  • Losada, C., Scaparra, M. P., Church, R. L., & Daskin, M. S. (2012). The stochastic interdiction median problem with disruption intensity levels. Annals of Operations Research, 201(1), 345–365.

    Article  Google Scholar 

  • Magliocca, N. R., McSweeney, K., Sesnie, S. E., Tellman, E., Devine, J. A., Nielsen, E. A., Pearson, Z., & Wrathall, D. J. (2019). Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system. Proceedings of the National Academy of Sciences, 116(16), 7784–7792. https://doi.org/10.1073/pnas.1812459116

    Article  Google Scholar 

  • Malaviya, A., Rainwater, C., & Sharkey, T. (2012). Multi-period network interdiction problems with applications to city-level drug enforcement. IIE Transactions, 44(5), 368–380.

    Article  Google Scholar 

  • Morton, D. P., Pan, F., & Saeger, K. J. (2007). Models for nuclear smuggling interdiction. IIE Transactions, 39(1), 3–14.

    Article  Google Scholar 

  • Nandi, A. K., & Medal, H. R. (2016). Methods for removing links in a network to minimize the spread of infections. Computers & Operations Research, 69, 10–24.

    Article  Google Scholar 

  • Nandi, A. K., Medal, H. R., & Vadlamani, S. (2016). Interdicting attack graphs to protect organizations from cyber attacks: A bi-level defender–attacker model. Computers & Operations Research, 75, 118–131.

    Article  Google Scholar 

  • Nguyen, D. H., & Smith, J. C. (2022a). Network interdiction with asymmetric cost uncertainty. European Journal of Operational Research, 297(1), 239–251.

    Article  Google Scholar 

  • Nguyen, D. H., & Smith, J. C. (2022). Asymmetric stochastic shortest-path interdiction under conditional value-at-risk. IISE Transactions. https://doi.org/10.1080/24725854.2022.2043570

    Article  Google Scholar 

  • Pan, F., Charlton, W. S., & Morton, D. P. (2003). A stochastic program for interdicting smuggled nuclear material. In D. L. Woodruff (Ed.), Network interdiction and stochastic integer programming (pp. 1–19). Boston: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48109-X_1

    Chapter  Google Scholar 

  • Pan, F., & Morton, D. P. (2008). Minimizing a stochastic maximum-reliability path. Networks: An International Journal, 52(3), 111–119.

    Article  Google Scholar 

  • Pay, B. S., Merrick, J. R., & Song, Y. (2019). Stochastic network interdiction with incomplete preference. Networks, 73(1), 3–22.

    Article  Google Scholar 

  • Price, A. N., Curtin, K. M., Magliocca, N. R., Turner, D., Mitchell, P., McSweeney, K., & Summers, D. L. (2022). A family of models in support of realistic drug interdiction location decision‐making. Transactions in GIS, 26(4), 1962–1980. https://doi.org/10.1111/tgis.12921

    Article  Google Scholar 

  • Sadeghi, S., Seifi, A., & Azizi, E. (2017). Trilevel shortest path network interdiction with partial fortification. Computers & Industrial Engineering, 106, 400–411.

    Article  Google Scholar 

  • Salmerón, J. (2012). Deception tactics for network interdiction: A multiobjective approach. Networks, 60(1), 45–58.

    Article  Google Scholar 

  • Smith, J. C., & Song, Y. (2019). A survey of network interdiction models and algorithms. European Journal of Operational Research, 283(3), 797–811.

    Article  Google Scholar 

  • Sullivan, K. M., Morton, D. P., Pan, F., & Cole Smith, J. (2014). Securing a border under asymmetric information. Naval Research Logistics (NRL), 61(2), 91–100.

    Article  Google Scholar 

  • Wei, N., & Walteros, J. L. (2022). Integer programming methods for solving binary interdiction games. European Journal of Operational Research., 302(2), 456–469.

    Article  Google Scholar 

  • Wei, N., Walteros, J. L., & Pajouh, F. M. (2021). Integer programming formulations for minimum spanning tree interdiction. INFORMS Journal on Computing, 33(4), 1461–1480.

    Google Scholar 

  • Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17(2), 1–18.

    Article  Google Scholar 

  • Yates, J., & Sanjeevi, S. (2013). A length-based, multiple-resource formulation for shortest path network interdiction problems in the transportation sector. International Journal of Critical Infrastructure Protection, 6(2), 107–119.

    Article  Google Scholar 

  • Zhang, C., & Ramirez-Marquez, J. E. (2013). Protecting critical infrastructures against intentional attacks: A two-stage game with incomplete information. IIE Transactions, 45(3), 244–258.

    Article  Google Scholar 

  • Zheng, K., & Albert, L. A. (2019). Interdiction models for delaying adversarial attacks against critical information technology infrastructure. Naval Research Logistics (NRL), 66(5), 411–429.

    Article  Google Scholar 

Download references

Funding

This study had no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Seifi.

Ethics declarations

Conflict of interest

The first author declares she has no conflict of interest. The second author declares he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, E., Seifi, A. Shortest path network interdiction with incomplete information: a robust optimization approach. Ann Oper Res 335, 727–759 (2024). https://doi.org/10.1007/s10479-023-05350-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05350-1

Keywords

Navigation