Skip to main content
Log in

Optimal seedings in interdependent contests

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study a model of two interdependent contests and heterogeneous players with commonly known types. The winners of both contests have winning values that depend on the types (abilities) of both winners. Therefore, endogenous win probabilities in each match depend on the outcomes of the other contests through the identity of the winner. The designer seeds players according to their types in order to maximize (minimize) the total effort. For such interdependent contests, each of which includes two heterogeneous players, we consider two different types of a winning value function and demonstrate that for multiplicative value functions it is optimal to place the two highest type players in different contests. On the other hand, for additive value functions it is optimal to place the two highest type players in the same contest since otherwise they practically do not affect each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A nice illustration of the interdependency of an elimination (knockout) tournament is the surprising fact that sometimes the second best player is more likely to win the tournament than to finish as the second one [see Kulhanek and Ponomarenko (2020)].

  2. On the existence of the equilibrium in Tullock contests, see Szidarovszky and Okuguchi (1997) and Einy et al. (2015).

  3. Other papers that deal with elimination tournaments include Kräkel (2014) where players are matched in the rank-order tournament, and Stracke et al. (2014) where players are matched in the Tullock contest.

  4. For round-robin tournaments in the statistical literature, see Rasmussen and Trick (2008), Briskorn and Drexl (2009), and Suksompong (2016).

  5. Csató (2021) is probably the first book that brings operations research into the realm of sports economics.

  6. For further papers that consider various optimality criteria for choosing seedings see Karpov (2016) and Dagaev and Suzdaltsev (2018).

  7. The equilibrium analysis holds even if the types are positive but smaller than 1. However, some of the results hold if these values larger than 1.

  8. The players’ winning value function is derived from the ex-post interaction of the winners in both contests.

References

  • Briskorn, D., & Drexl, A. (2009). A brunching scheme for finding cost-minimal round-robin tournaments. European Journal of Operational Research, 197(1), 68–76.

    Article  Google Scholar 

  • Corona, F., Forrest, D., Tena, J. D., & Wiper, M. (2019). Bayesian forecasting of UEFA Champions League under alternative seeding regimes. International Journal of Forecasting, 35(2), 722–732.

    Article  Google Scholar 

  • Csató, L. (2020). The UEFA Champions League seeding is not strategy-proof since the 2015/16 season. Annals of Operations Research, 292(1), 161–169.

    Article  Google Scholar 

  • Csató, L. (2021). Tournament design: How operations research can improve sports rules. Palagrave Pivots in Sports Economics. Palagrave Macmilan.

  • Dagaev, D., & Rudyak, V. (2019). Seeding the UEFA Champions League participants: Evaluation of the reform. Journal of Quantitative Analysis in Sports, 15(2), 129–140.

    Article  Google Scholar 

  • Dagaev, D., & Suzdaltsev, A. (2018). Competitive intensity and quality maximizing seedings in knock-out tournaments. Journal of Combinatorial Optimization, 35(1), 170–188.

    Article  Google Scholar 

  • David, H. (1959). Tournaments and paired comparisons. Biometrika, 46, 139–149.

    Article  Google Scholar 

  • Della Croce, F., Dragotto, G., Scatamacchia, R. (2022). On fairness and diversification in WTA and ATP tennis tournaments generation. Annals of Operations Research, 316, 107–119.

  • Einy, E., Haimanko, O., Moreno, D., Sela, A., & Shitovitz, B. (2015). Equilibrium existence in Tullock contests with incomplete information. Journal of Mathematical Economics, 61, 241–245.

    Article  Google Scholar 

  • Engist, O., Merkus, E., & Schafmeister, F. (2021). The effect of seeding on tournament outcomes: Evidence from a regression-discontinuity design. Journal of Sports Economics, 22(1), 115–136.

    Article  Google Scholar 

  • Fu, Q., & Lu, J. (2009). The beauty of “bigness’’: On optimal design of multi-winner contests. Games and Economic Behavior, 66(1), 146–161.

    Article  Google Scholar 

  • Fu, Q., & Lu, J. (2012). The optimal multi-stage contest. Economic Theory, 51(2), 351–382.

    Article  Google Scholar 

  • Fu, Q., Lu, J., & Pan, Y. (2015). Team contests with multiple pair-wise battles. American Economic Review, 105(7), 2120–2140.

    Article  Google Scholar 

  • Glenn, W. (1960). A comparison of the effectiveness of tournaments. Biometrika, 47, 253–262.

    Article  Google Scholar 

  • Gradstein, M., & Konrad, K. (1999). Orchestrating rent-seeking contests. Economic Journal, 109, 536–545.

    Article  Google Scholar 

  • Groh, C., Moldovanu, B., Sela, A., & Sunde, U. (2012). Optimal seeding in elimination tournaments. Economic Theory, 49, 59–80.

    Article  Google Scholar 

  • Horen, J., & Riezman, R. (1985). Comparing draws for single elimination tournaments. Operations Research, 3(2), 249–262.

    Article  Google Scholar 

  • Hwang, F. (1982). New concepts in seeding knockout tournaments. American Mathematical Monthly, 89, 235–239.

    Article  Google Scholar 

  • Jian, l, Li, Z., & Liu, T. X. (2017). Simultaneous versus sequential all-pay auctions: An experimental study. Experimental Economics, 20, 648–669.

    Article  Google Scholar 

  • Juang, W. T., Sun, G. Z., & Yuan, K. C. (2020). A model of parallel contests. International Journal of Game Theory, 49, 651–672.

    Article  Google Scholar 

  • Karpov, A. (2016). A new knockout tournament seeding method and its axiomatic justification. Operations Research Letters, 44(6), 706–711.

    Article  Google Scholar 

  • Kräkel, M. (2014). Optimal seeding in elimination tournaments revisited. Economic Theory Bulletin, 2, 77–91.

    Article  Google Scholar 

  • Krumer, A., Megidish, R., & Sela, A. (2017). First-mover advantage in round-robin tournaments. Social Choice and Welfare, 48(3), 633–658.

    Article  Google Scholar 

  • Krumer, A., Megidish, R., & Sela, A. (2020). The optimal design of round-robin tournaments with three players. Journal of Scheduling, 23, 379–396.

    Article  Google Scholar 

  • Kulhanek, T., & Ponomarenko, V. (2020). Surprises in knockout tournaments. Mathematics Magazine, 93(3), 193–199.

    Article  Google Scholar 

  • Laica, C., Lauber, A., & Sahm, M. (2021). Sequential round-robin tournaments with multiple prizes. Games and Economic Behavior, 129, 421–448.

    Article  Google Scholar 

  • Levi-Tsedek, N., & Sela, A. (2019). Sequential (one-against-all) contests. Economics Letters, 175, 9–11.

    Article  Google Scholar 

  • Linster, B. G. (1993). Stackelberg rent-seeking. Public Choice, 77(2), 307–321.

    Article  Google Scholar 

  • Mago, S. D., & Sheremeta, R. M. (2019). New Hampshire effect: Behavior in sequential and simultaneous multi-battle contests. Experimental Economics, 22, 325–349.

    Article  Google Scholar 

  • Moldovanu, B., & Sela, A. (2006). Contest architecture. Journal of Economic Theory, 126, 70–96.

    Article  Google Scholar 

  • Rasmussen, R., & Trick, M. A. (2008). Round-robin scheduling—A survey. European Journal of Operational Research, 188(3), 617–636.

    Article  Google Scholar 

  • Rosen, S. (1986). Prizes and incentives in elimination tournaments. American Economic Review, 76(4), 701–715.

    Google Scholar 

  • Sahm, M. (2019). Are sequential round-robin tournaments discriminatory? Journal of Public Economic Theory, 21(1), 44–61.

    Article  Google Scholar 

  • Schwenk, A. (2000). What is the correct way to seed a knockout tournament? American Mathematical Monthly, 107, 140–150.

    Article  Google Scholar 

  • Searles, D. (1963). On the probability of winning with different tournament procedures. Journal of the American Statistical Association, 58, 1064–1081.

    Article  Google Scholar 

  • Stracke, R., Hochtl, W., Kerschbamer, R., & Sunde, U. (2014). Optimal prizes in dynamic elimination contests: Theory and experimental evidence. Journal of Economic Behavior & Organization, 102, 43–58.

    Article  Google Scholar 

  • Suksompong, W. (2016). Scheduling asynchronous round-robin tournaments. Operations Research Letters, 44(1), 96–100.

    Article  Google Scholar 

  • Szidarovszky, F., & Okuguchi, K. (1997). On the existence and uniqueness of pure Nash equilibrium in rent-seeking games. Games Economic Behavior, 18(1), 135–140.

    Article  Google Scholar 

  • Tullock, G. (1980). Efficient rent-seeking. In J. M. Buchanan, R. D. Tollison, & G. Tullock (Eds.), Toward a theory of rent-seeking society. Texas A &M University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aner Sela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article does not contain any studies with human participants performed by any of the authors.

Appendix

Appendix

1.1 Proof of Proposition 1

By (5), the second-order conditions (SOC) of the maximization problems (1)–(4) are

$$\begin{aligned} \textrm{soc}_{m_{h}}= & {} \frac{-2x_{l}}{\left( x_{h}+x_{l}\right) ^{3}}\left( f(m_{h},w_{h})\frac{y_{h}}{y_{h}+y_{l}}+f(m_{h},w_{l})\frac{y_{l}}{ y_{h}+y_{l}}\right) \\ \textrm{soc}_{m_{l}}= & {} \frac{-2x_{h}}{\left( x_{h}+x_{l}\right) ^{3}}\left( f(m_{l},w_{h})\frac{y_{h}}{y_{h}+y_{l}}+f(m_{l},w_{l})\frac{y_{l}}{ y_{h}+y_{l}}\right) \\ \textrm{soc}_{w_{h}}= & {} \frac{-2y_{l}}{\left( y_{h}+y_{l}\right) ^{3}}\left( g(m_{h},w_{h})\frac{x_{h}}{x_{h}+x_{l}}+g(m_{l},w_{h})\frac{x_{l}}{ x_{h}+x_{l}}\right) \\ \textrm{soc}_{w_{l}}= & {} \frac{-2y_{h}}{\left( y_{h}+y_{l}\right) ^{3}}\left( g(m_{h},w_{l})\frac{x_{h}}{x_{h}+x_{l}}+g(m_{l},w_{l})\frac{x_{l}}{ x_{h}+x_{l}}\right) . \end{aligned}$$

We can see that the SOC are negative as we need\(\square \).

1.2 Proof of Proposition 2

The F.O.C. given by (5) can be rewritten as follows:

$$\begin{aligned} \frac{x_{l}m_{h}^{\alpha }}{\left( x_{h}+x_{l}\right) ^{2}}\left( w_{h}^{\beta }\frac{y_{h}}{y_{h}+y_{l}}+w_{l}^{\beta }\frac{y_{l}}{ y_{h}+y_{l}}\right)= & {} 1 \nonumber \\ \frac{x_{h}m_{l}^{\alpha }}{\left( x_{h}+x_{l}\right) ^{2}}\left( w_{h}^{\beta }\frac{y_{h}}{y_{h}+y_{l}}+w_{l}^{\beta }\frac{y_{l}}{ y_{h}+y_{l}}\right)= & {} 1 \nonumber \\ \frac{y_{l}w_{h}^{\beta }}{\left( y_{h}+y_{l}\right) ^{2}}\left( m_{h}^{\alpha }\frac{x_{h}}{x_{h}+x_{l}}+m_{l}^{\alpha }\frac{x_{l}}{ x_{h}+x_{l}}\right)= & {} 1 \nonumber \\ \frac{y_{h}w_{l}^{\beta }}{\left( y_{h}+y_{l}\right) ^{2}}\left( m_{h}^{\alpha }\frac{x_{h}}{x_{h}+x_{l}}+m_{l}^{\alpha }\frac{x_{l}}{ x_{h}+x_{l}}\right)= & {} 1. \end{aligned}$$
(21)

By dividing the first two F.O.C we obtain (7)

$$\begin{aligned} \frac{x_{h}}{x_{l}}=\frac{m_{h}^{\alpha }}{m_{l}^{\alpha }}. \end{aligned}$$

And, by dividing the last two F.O.C. we obtain (8)

$$\begin{aligned} \frac{y_{h}}{y_{l}}=\frac{w_{h}^{\beta }}{w_{l}^{\beta }}. \end{aligned}$$

We can now calculate the winning probability of each player using (8):

$$\begin{aligned} \frac{y_{h}}{y_{h}+y_{l}}=\frac{\frac{y_{h}}{y_{l}}}{\frac{y_{h}}{y_{l}}+1}= \frac{\frac{w_{h}^{\beta }}{w_{l}^{\beta }}}{\frac{w_{h}^{\beta }}{ w_{l}^{\beta }}+1}=\frac{w_{h}^{\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}, \end{aligned}$$
(22)

and

$$\begin{aligned} \frac{y_{l}}{y_{h}+y_{l}}=\frac{1}{\frac{y_{h}}{y_{l}}+1}=\frac{1}{\frac{ w_{h}^{\beta }}{w_{l}^{\beta }}+1}=\frac{w_{l}^{\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}. \end{aligned}$$
(23)

Similarly, by (7), we have

$$\begin{aligned} \frac{x_{h}}{x_{h}+x_{l}}=\frac{\frac{x_{h}}{x_{l}}}{\frac{x_{h}}{x_{l}}+1}= \frac{\frac{m_{h}^{\alpha }}{m_{l}^{\alpha }}}{\frac{m_{h}^{\alpha }}{ m_{l}^{\alpha }}+1}=\frac{m_{h}^{\alpha }}{m_{h}^{\alpha }+m_{l}^{\alpha }}, \end{aligned}$$
(24)

and

$$\begin{aligned} \frac{x_{l}}{x_{h}+x_{l}}=\frac{1}{\frac{x_{h}}{x_{l}}+1}=\frac{1}{\frac{ m_{h}^{\alpha }}{m_{l}^{\alpha }}+1}=\frac{m_{l}^{\alpha }}{m_{h}^{\alpha }+m_{l}^{\alpha }}. \end{aligned}$$
(25)

Now, inserting (22) and (23) into (21) yields

$$\begin{aligned} \frac{x_{l}m_{h}^{\alpha }}{\left( x_{h}+x_{l}\right) ^{2}}\left( w_{h}^{\beta }\frac{w_{h}^{\beta }}{w_{h}^{\beta }+w_{l}^{\beta }} +w_{l}^{\beta }\frac{w_{l}^{\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}\right) =1, \end{aligned}$$

or, alternatively,

$$\begin{aligned}{} & {} \frac{x_{l}m_{h}^{\alpha }}{\left( x_{h}+x_{l}\right) ^{2}}\left( \frac{ w_{h}^{2\beta }+w_{l}^{2\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}\right) \\{} & {} \quad =\frac{m_{l}^{\alpha }}{m_{h}^{\alpha }+m_{l}^{\alpha }}\frac{ m_{h}^{\alpha }}{x_{h}+x_{l}}\left( \frac{w_{h}^{2\beta }+w_{l}^{2\beta }}{ w_{h}^{\beta }+w_{l}^{\beta }}\right) =1. \end{aligned}$$

Then, by (7), we have

$$\begin{aligned}{} & {} \frac{m_{l}^{\alpha }}{m_{h}^{\alpha }+m_{l}^{\alpha }}\frac{m_{h}^{\alpha }}{x_{l}\frac{m_{h}^{\alpha }}{m_{l}^{\alpha }}+x_{l}}\left( \frac{ w_{h}^{2\beta }+w_{l}^{2\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}\right) \\{} & {} \quad =\frac{m_{l}^{\alpha }}{m_{h}^{\alpha }+m_{l}^{\alpha }}\frac{ m_{h}^{\alpha }}{x_{l}(\frac{m_{h}^{\alpha }}{m_{l}^{\alpha }}+1)}\left( \frac{w_{h}^{2\beta }+w_{l}^{2\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}\right) \\{} & {} \quad =\frac{m_{l}^{\alpha }}{m_{h}^{\alpha }+m_{l}^{\alpha }}\frac{ m_{h}^{\alpha }}{x_{l}(\frac{m_{h}^{\alpha }+m_{l}^{\alpha }}{m_{l}^{\alpha } })}\left( \frac{w_{h}^{2\beta }+w_{l}^{2\beta }}{w_{h}^{\beta }+w_{l}^{\beta }}\right) =1. \end{aligned}$$

Thus, the equilibrium effort of the low-type player from set M is

$$\begin{aligned} x_{l}=\frac{m_{h}^{\alpha }m_{l}^{2\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) ^{2}\left( w_{h}^{\beta }+w_{l}^{\beta }\right) }, \end{aligned}$$

and similarly, the other players’ equilibrium efforts are

$$\begin{aligned} x_{h}= & {} \frac{m_{h}^{2\alpha }m_{l}^{\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) ^{2}\left( w_{h}^{\beta }+w_{l}^{\beta }\right) } \\ y_{h}= & {} \frac{w_{h}^{2\beta }w_{l}^{\beta }\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) }{\left( w_{h}^{\beta }+w_{l}^{\beta }\right) ^{2}\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) } \\ y_{l}= & {} \frac{w_{h}^{\beta }w_{l}^{2\beta }\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) }{\left( w_{h}^{\beta }+w_{l}^{\beta }\right) ^{2}\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) }. \end{aligned}$$

\(\square \)

1.3 Proof of Proposition 3

By (9), the total effort in set M is

$$\begin{aligned} TE_{M}= & {} x_{h}+x_{l}=\frac{m_{h}^{2\alpha }m_{l}^{\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) ^{2}\left( w_{h}^{\beta }+w_{l}^{\beta }\right) }+ \frac{m_{h}^{\alpha }m_{l}^{2\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) ^{2}\left( w_{h}^{\beta }+w_{l}^{\beta }\right) } \\= & {} \frac{\left( m_{h}^{2\alpha }m_{l}^{\alpha }+m_{h}^{\alpha }m_{l}^{2\alpha }\right) \left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{ \left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) ^{2}\left( w_{h}^{\beta }+w_{l}^{\beta }\right) }=\frac{m_{l}^{\alpha }m_{h}^{\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) }, \end{aligned}$$

and in set W it is

$$\begin{aligned} TE_{W}= & {} y_{h}+y_{l}=\frac{\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) w_{h}^{2\beta }w_{l}^{\beta }}{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) ^{2}}+\frac{\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) w_{h}^{\beta }w_{l}^{2\beta }}{ \left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) ^{2}} \\= & {} \frac{\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) \left( w_{h}^{2\beta }w_{l}^{\beta }+w_{h}^{\beta }w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) ^{2}}=\frac{\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) w_{l}^{\beta }w_{h}^{\beta }}{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) }. \end{aligned}$$

Thus, the total effort in both sets is

$$\begin{aligned} TE= & {} TE_{M}+TE_{W}=x_{h}+x_{l}+y_{h}+y_{l} \\= & {} \frac{m_{h}^{\alpha }m_{l}^{\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) }{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) }+\frac{\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) w_{h}^{\beta }w_{l}^{\beta }}{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) } \\= & {} \frac{m_{l}^{\alpha }m_{h}^{\alpha }\left( w_{h}^{2\beta }+w_{l}^{2\beta }\right) +\left( m_{h}^{2\alpha }+m_{l}^{2\alpha }\right) w_{h}^{\beta }w_{l}^{\beta }}{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) } \\= & {} \frac{m_{l}^{\alpha }m_{h}^{\alpha }w_{h}^{2\beta }+m_{l}^{\alpha }m_{h}^{\alpha }w_{l}^{2\beta }+w_{h}^{\beta }w_{l}^{\beta }m_{h}^{2\alpha }+w_{h}^{\beta }w_{l}^{\beta }m_{l}^{2\alpha }}{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) } \\= & {} \frac{(m_{h}^{\alpha }w_{h}^{\beta }+m_{l}^{\alpha }w_{l}^{\beta })(m_{h}^{\alpha }w_{l}^{\beta }+m_{l}^{\alpha }w_{h}^{\beta })}{\left( m_{h}^{\alpha }+m_{l}^{\alpha }\right) \left( w_{h}^{\beta }+w_{l}^{\beta }\right) }. \end{aligned}$$

\(\square \)

1.4 Proof of Proposition 4

Below, we calculate the terms \({\tilde{w}}\) and \({\tilde{m}}\) that appear in the equilibrium efforts given by (15). By definition,

$$\begin{aligned} {\tilde{m}}= & {} \frac{x_{h}}{x_{h}+x_{l}}m_{h}+\frac{x_{l}}{x_{h}+x_{l}}m_{l} \\ {\tilde{w}}= & {} \frac{y_{h}}{y_{h}+y_{l}}w_{h}+\frac{y_{l}}{y_{h}+y_{l}}w_{l}. \end{aligned}$$

Inserting (13) and (14) yields

$$\begin{aligned} {\tilde{w}}= & {} \frac{y_{h}}{y_{h}+y_{l}}w_{h}+\frac{y_{l}}{y_{h}+y_{l}}w_{l}= \frac{\alpha {\tilde{m}}+\beta w_{h}}{\beta w_{h}+\beta w_{l}+2\alpha {\tilde{m}} }w_{h}+\left( 1-\frac{\alpha {\tilde{m}}+\beta w_{h}}{\beta w_{h}+\beta w_{l}+2\alpha {\tilde{m}}}\right) w_{l} \nonumber \\= & {} \frac{\beta \left( w_{h}^{2}+w_{l}^{2}\right) +\alpha {\tilde{m}}\left( w_{h}+w_{l}\right) }{\beta w_{h}+\beta w_{l}+2\alpha {\tilde{m}}}=\frac{\beta \left( w_{h}^{2}+w_{l}^{2}\right) +\alpha \left( \frac{x_{h}}{x_{h}+x_{l}} m_{h}+\frac{x_{l}}{x_{h}+x_{l}}m_{l}\right) \left( w_{h}+w_{l}\right) }{ \beta w_{h}+\beta w_{l}+2\alpha \left( \frac{x_{h}}{x_{h}+x_{l}}m_{h}+\frac{ x_{l}}{x_{h}+x_{l}}m_{l}\right) } \nonumber \\= & {} \frac{\alpha \left( w_{h}+w_{l}\right) \left( x_{h}m_{h}+x_{l}m_{l}\right) +\beta \left( w_{h}^{2}+w_{l}^{2}\right) \left( x_{h}+x_{l}\right) }{2\alpha \left( x_{h}m_{h}+x_{l}m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \left( x_{h}+x_{l}\right) }. \end{aligned}$$
(26)

By (15), we have

$$\begin{aligned} x_{h}+x_{l}= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) ^{2}\left( \alpha m_{l}+\beta {\tilde{w}}\right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}+\frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) ^{2} }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}} \nonumber \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) ^{2}\left( \alpha m_{l}+\beta {\tilde{w}}\right) +\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) ^{2}}{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}} \nonumber \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) }{\alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}}, \end{aligned}$$
(27)

and

$$\begin{aligned} x_{h}m_{h}+x_{l}m_{l}= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) ^{2}\left( \alpha m_{l}+\beta {\tilde{w}}\right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}m_{h}+\frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) ^{2} }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}m_{l}\nonumber \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) \left( \alpha \left( m_{h}^{2}+m_{l}^{2}\right) +\beta {\tilde{w}}\left( m_{h}+m_{l}\right) \right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}. \end{aligned}$$
(28)

Inserting (27) and (28) into (26) yields

$$\begin{aligned} {\tilde{w}}= & {} \frac{\alpha \left( w_{h}+w_{l}\right) \left( x_{h}m_{h}+x_{l}m_{l}\right) +\beta \left( w_{h}^{2}+w_{l}^{2}\right) \left( x_{h}+x_{l}\right) }{2\alpha \left( x_{h}m_{h}+x_{l}m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \left( x_{h}+x_{l}\right) } \\= & {} \frac{\alpha \left( w_{h}+w_{l}\right) \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) \left( \alpha \left( m_{h}^{2}+m_{l}^{2}\right) +\beta {\tilde{w}}\left( m_{h}+m_{l}\right) \right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}+\beta \left( w_{h}^{2}+w_{l}^{2}\right) \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) }{ \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}}}{2\alpha \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}} \right) \left( \alpha \left( m_{h}^{2}+m_{l}^{2}\right) +\beta {\tilde{w}} \left( m_{h}+m_{l}\right) \right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}+\beta \left( w_{h}+w_{l}\right) \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}} \right) }{\alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}}} \\= & {} \frac{\beta \left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}} \right) \left( w_{h}^{2}+w_{l}^{2}\right) +\alpha \left( \alpha \left( m_{h}^{2}+m_{l}^{2}\right) +\beta {\tilde{w}}\left( m_{h}+m_{l}\right) \right) \left( w_{h}+w_{l}\right) }{\beta \left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) \left( w_{h}+w_{l}\right) +2\alpha \left( \alpha \left( m_{h}^{2}+m_{l}^{2}\right) +\beta {\tilde{w}}\left( m_{h}+m_{l}\right) \right) } \\= & {} \frac{\alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}^{2}+w_{l}^{2}\right) +2\beta ^{2}{\tilde{w}}\left( w_{h}^{2}+w_{l}^{2}\right) +\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) \left( w_{h}+w_{l}\right) +\alpha \beta {\tilde{w}}\left( m_{h}+m_{l}\right) \left( w_{h}+w_{l}\right) }{\alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}+w_{l}\right) +2\beta ^{2}{\tilde{w}}\left( w_{h}+w_{l}\right) +2\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) +2\alpha \beta {\tilde{w}}\left( m_{h}+m_{l}\right) }. \end{aligned}$$

Thus,

$$\begin{aligned}{} & {} \left( \left( \alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}+w_{l}\right) +2\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) \right) +\left( 2\alpha \beta \left( m_{h}+m_{l}\right) +2\beta ^{2}\left( w_{h}+w_{l}\right) \right) {\tilde{w}}\right) {\tilde{w}} \\{} & {} \quad =\left( \alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}^{2}+w_{l}^{2}\right) +\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) \left( w_{h}+w_{l}\right) \right) \\{} & {} \qquad +\,\left( 2\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) +\alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}+w_{l}\right) \right) {\tilde{w}}, \end{aligned}$$

or, alternatively,

$$\begin{aligned}{} & {} \left( \alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}+w_{l}\right) +2\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) -2\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) -\alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}+w_{l}\right) \right) {\tilde{w}} \\{} & {} \qquad +\,\left( 2\alpha \beta \left( m_{h}+m_{l}\right) +2\beta ^{2}\left( w_{h}+w_{l}\right) \right) {\tilde{w}}^{2}-\left( \alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}^{2}+w_{l}^{2}\right) \right. \\{} & {} \qquad \left. +\,\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) \left( w_{h}+w_{l}\right) \right) \\{} & {} \quad =0. \end{aligned}$$

Rearranging the last equation yields the following quardratic equation of the parameter \({\tilde{w}}\),

$$\begin{aligned}{} & {} \left( 2\alpha \beta \left( m_{h}+m_{l}\right) +2\beta ^{2}\left( w_{h}+w_{l}\right) \right) {\tilde{w}}^{2}+\left( 2\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) -2\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) \right) {\tilde{w}} \\{} & {} \qquad -\,\left( \alpha \beta \left( m_{h}+m_{l}\right) \left( w_{h}^{2}+w_{l}^{2}\right) +\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) \left( w_{h}+w_{l}\right) \right) \\{} & {} \quad =0. \end{aligned}$$

The solution of this equation is

$$\begin{aligned} {\tilde{w}}= & {} \frac{\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) -\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) }{2\beta \left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) } \\{} & {} \pm \frac{\sqrt{\left( \left( \alpha m_{h}+\beta w_{h}\right) ^{2}+\left( \alpha m_{l}+\beta w_{l}\right) ^{2}\right) \left( \left( \alpha m_{h}+\beta w_{l}\right) ^{2}+\left( \alpha m_{l}+\beta w_{h}\right) ^{2}\right) }}{ 2\beta \left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) }. \end{aligned}$$

Since \({\tilde{w}}\) is positive, we have only one feasible solution which is

$$\begin{aligned} {\tilde{w}}= & {} \frac{\sqrt{\left( \left( \alpha m_{h}+\beta w_{h}\right) ^{2}+\left( \alpha m_{l}+\beta w_{l}\right) ^{2}\right) \left( \left( \alpha m_{h}+\beta w_{l}\right) ^{2}+\left( \alpha m_{l}+\beta w_{h}\right) ^{2}\right) }}{2\beta \left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) } \\{} & {} +\,\frac{\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) -\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) }{2\beta \left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) }. \end{aligned}$$

Similarly, we obtain that

$$\begin{aligned} {\tilde{m}}= & {} \frac{\sqrt{\left( \left( \alpha m_{h}+\beta w_{h}\right) ^{2}+\left( \alpha m_{l}+\beta w_{l}\right) ^{2}\right) \left( \left( \alpha m_{h}+\beta w_{l}\right) ^{2}+\left( \alpha m_{l}+\beta w_{h}\right) ^{2}\right) }}{2\alpha \left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) } \\{} & {} +\,\frac{\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) -\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) }{2\alpha \left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) }. \end{aligned}$$

\(\square \)

1.5 Proof of Proposition 5

By (15), we obtain the total effort in set M is

$$\begin{aligned} x_{h}+x_{l}= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) ^{2}\left( \alpha m_{l}+\beta {\tilde{w}}\right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}}+\frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) ^{2} }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}} \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) ^{2}\left( \alpha m_{l}+\beta {\tilde{w}}\right) +\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) ^{2}}{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}} \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) \left( \left( \alpha m_{h}+\beta {\tilde{w}} \right) +\left( \alpha m_{l}+\beta {\tilde{w}}\right) \right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}} \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) \left( \alpha m_{h}+\alpha m_{l}+2\beta \tilde{w }\right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) ^{2}} \\= & {} \frac{\left( \alpha m_{h}+\beta {\tilde{w}}\right) \left( \alpha m_{l}+\beta {\tilde{w}}\right) }{\left( \alpha \left( m_{h}+m_{l}\right) +2\beta {\tilde{w}}\right) }. \end{aligned}$$

Inserting (16) into the above equation gives us

$$\begin{aligned} x_{h}+x_{l}=\frac{\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) +\alpha \beta (m_{h}+m_{l})w_{h}+\alpha \beta (m_{h}+m_{l})w_{l}+2\alpha ^{2}m_{h}m_{l}}{ 2\left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) }. \end{aligned}$$

Similarly, the total effort in set W is

$$\begin{aligned} y_{h}+y_{l}= & {} \frac{\left( \alpha {\tilde{m}}+\beta w_{h}\right) \left( \alpha {\tilde{m}}+\beta w_{l}\right) }{\left( 2\alpha {\tilde{m}}+\beta \left( w_{h}+w_{l}\right) \right) } \\= & {} \frac{\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) +\alpha \beta (w_{h}+w_{l})m_{h}+\alpha \beta (w_{h}+w_{l})m_{l}+2\beta ^{2}w_{h}w_{l}}{ 2\left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) } \end{aligned}$$

Thus, the total effort in both sets is

$$\begin{aligned} TE= & {} x_{h}+x_{l}+y_{h}+y_{l} \\= & {} \frac{\beta ^{2}\left( w_{h}^{2}+w_{l}^{2}\right) +\alpha \beta (m_{h}+m_{l})w_{h}+\alpha \beta (m_{h}+m_{l})w_{l}+2\alpha ^{2}m_{h}m_{l}}{ 2\left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) } \\{} & {} +\,\frac{\alpha ^{2}\left( m_{h}^{2}+m_{l}^{2}\right) +\alpha \beta (w_{h}+w_{l})m_{h}+\alpha \beta (w_{h}+w_{l})m_{l}+2\beta ^{2}w_{h}w_{l}}{ 2\left( \alpha \left( m_{h}+m_{l}\right) +\beta \left( w_{h}+w_{l}\right) \right) } \\= & {} \frac{\alpha m_{h}+\alpha m_{l}+\beta w_{h}+\beta w_{l}}{2}. \end{aligned}$$

\(\square \)

1.6 Proof of Proposition 7

Assume that \(\beta \) is any constant and that \(\alpha \) approaches infinity. Then, by (20), given that \( v_{1}>v_{2}>v_{3}>v_{4}\), we obtain that

  1. (1)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{3}}{TE_{1}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{1}^{\alpha }v_{3}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{1}^{\alpha }v_{2}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{2}^{\beta }+v_{3}^{\beta }\right) }}{ \frac{\left( v_{1}^{\alpha }v_{4}^{\beta }+v_{2}^{\alpha }v_{3}^{\beta }\right) \left( v_{1}^{\alpha }v_{3}^{\beta }+v_{2}^{\alpha }v_{4}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{2}^{\alpha }\right) \left( v_{3}^{\beta }+v_{4}^{\beta }\right) }}=\frac{\left( v_{3}^{\beta }+v_{4}^{\beta }\right) v_{2}^{\beta }}{\left( v_{2}^{\beta }+v_{3}^{\beta }\right) v_{4}^{\beta }} >1. \end{aligned}$$
  2. (2)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{3}}{TE_{2}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{1}^{\alpha }v_{3}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{1}^{\alpha }v_{2}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{2}^{\beta }+v_{3}^{\beta }\right) }}{ \frac{\left( v_{1}^{\alpha }v_{4}^{\beta }+v_{3}^{\alpha }v_{2}^{\beta }\right) \left( v_{1}^{\alpha }v_{2}^{\beta }+v_{3}^{\alpha }v_{4}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{3}^{\alpha }\right) \left( v_{2}^{\beta }+v_{4}^{\beta }\right) }}=\frac{\left( v_{2}^{\beta }+v_{4}^{\beta }\right) v_{3}^{\beta }}{\left( v_{2}^{\beta }+v_{3}^{\beta }\right) v_{4}^{\beta }} >1. \end{aligned}$$
  3. (3)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{3}}{TE_{4}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{1}^{\alpha }v_{3}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{1}^{\alpha }v_{2}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{2}^{\beta }+v_{3}^{\beta }\right) }}{ \frac{\left( v_{3}^{\alpha }v_{1}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{4}^{\alpha }v_{1}^{\beta }+v_{3}^{\alpha }v_{2}^{\beta }\right) }{\left( v_{3}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{1}^{\beta }+v_{2}^{\beta }\right) }}=\lim _{\alpha \rightarrow \infty }\frac{ v_{1}^{\alpha }}{v_{3}^{\alpha }}\frac{\left( v_{1}^{\beta }+v_{2}^{\beta }\right) v_{3}^{\beta }v_{2}^{\beta }}{\left( v_{2}^{\beta }+v_{3}^{\beta }\right) v_{1}^{\beta }v_{2}^{\beta }}=\infty . \end{aligned}$$
  4. (4)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{3}}{TE_{5}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{1}^{\alpha }v_{3}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{1}^{\alpha }v_{2}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{2}^{\beta }+w_{3}^{\beta }\right) }}{ \frac{\left( v_{2}^{\alpha }v_{1}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) \left( v_{4}^{\alpha }v_{1}^{\beta }+v_{2}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{2}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{1}^{\beta }+v_{3}^{\beta }\right) }}=\lim _{\alpha \rightarrow \infty }\frac{ v_{1}^{\alpha }}{v_{2}^{\alpha }}\frac{\left( v_{1}^{\beta }+v_{3}^{\beta }\right) v_{3}^{\beta }v_{2}^{\beta }}{\left( v_{2}^{\beta }+w_{3}^{\beta }\right) v_{1}^{\beta }v_{3}^{\beta }}=\infty . \end{aligned}$$
  5. (5)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{3}}{TE_{6}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{1}^{\alpha }v_{3}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{1}^{\alpha }v_{2}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{1}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{2}^{\beta }+w_{3}^{\beta }\right) }}{ \frac{\left( v_{2}^{\alpha }v_{1}^{\beta }+v_{3}^{\alpha }v_{4}^{\beta }\right) \left( v_{3}^{\alpha }v_{1}^{\beta }+v_{2}^{\alpha }v_{4}^{\beta }\right) }{\left( v_{2}^{\alpha }+w_{3}^{\alpha }\right) \left( v_{1}^{\beta }+v_{4}^{\beta }\right) }}=\lim _{\alpha \rightarrow \infty }\frac{ v_{1}^{\alpha }}{v_{2}^{\alpha }}\frac{\left( v_{1}^{\beta }+v_{4}^{\beta }\right) v_{3}^{\beta }v_{2}^{\beta }}{\left( v_{2}^{\beta }+w_{3}^{\beta }\right) v_{1}^{\beta }v_{4}^{\beta }}=\infty . \end{aligned}$$

Thus, when \(\alpha \) converges to infinity, the optimal seeding for a designer who wishes to maximize the players’ total effort is \(M:1{-}4\), \( W:2{-}3.\)

Likewise, by (20), given that \( v_{1}>v_{2}>v_{3}>v_{4}\), we obtain that

  1. (6)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{4}}{TE_{5}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{3}^{\alpha }v_{1}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{4}^{\alpha }v_{1}^{\beta }+v_{3}^{\alpha }v_{2}^{\beta }\right) }{\left( v_{3}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{1}^{\beta }+v_{2}^{\beta }\right) }}{ \frac{\left( v_{2}^{\alpha }v_{1}^{\beta }+v_{4}^{\alpha }v_{3}^{\beta }\right) \left( v_{4}^{\alpha }v_{1}^{\beta }+v_{2}^{\alpha }v_{3}^{\beta }\right) }{\left( v_{2}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{1}^{\beta }+v_{3}^{\beta }\right) }}=\lim _{\alpha \rightarrow \infty }\frac{ v_{3}^{\alpha }}{v_{2}^{\alpha }}\frac{\left( v_{1}^{\beta }+v_{3}^{\beta }\right) v_{1}^{\beta }v_{2}^{\beta }}{\left( v_{1}^{\beta }+v_{2}^{\beta }\right) v_{1}^{\beta }v_{3}^{\beta }}=0. \end{aligned}$$
  2. (7)
    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{4}}{TE_{6}}=\lim _{\alpha \rightarrow \infty }\frac{\frac{\left( v_{3}^{\alpha }v_{1}^{\beta }+v_{4}^{\alpha }v_{2}^{\beta }\right) \left( v_{4}^{\alpha }v_{1}^{\beta }+v_{3}^{\alpha }v_{2}^{\beta }\right) }{\left( v_{3}^{\alpha }+v_{4}^{\alpha }\right) \left( v_{1}^{\beta }+v_{2}^{\beta }\right) }}{ \frac{\left( v_{2}^{\alpha }v_{1}^{\beta }+v_{3}^{\alpha }v_{4}^{\beta }\right) \left( v_{3}^{\alpha }v_{1}^{\beta }+v_{2}^{\alpha }v_{4}^{\beta }\right) }{\left( v_{2}^{\alpha }+w_{3}^{\alpha }\right) \left( v_{1}^{\beta }+v_{4}^{\beta }\right) }}=\lim _{\alpha \rightarrow \infty }\frac{ v_{3}^{\alpha }}{v_{2}^{\alpha }}\frac{\left( v_{1}^{\beta }+v_{4}^{\beta }\right) v_{1}^{\beta }v_{2}^{\beta }}{\left( v_{1}^{\beta }+v_{2}^{\beta }\right) v_{1}^{\beta }v_{4}^{\beta }}=0. \end{aligned}$$

    Since we already found that \(\lim _{\alpha \rightarrow \infty }\frac{TE_{4}}{ TE_{3}}=0\), and similarly it can be verified that

    $$\begin{aligned} \lim _{\alpha \rightarrow \infty }\frac{TE_{4}}{TE_{2}}=\lim _{\alpha \rightarrow \infty }\frac{TE_{4}}{TE_{1}}=0, \end{aligned}$$

    we obtain that when \(\alpha \) converges to infinity, the optimal seeding for a designer who wishes to minimize the players’ total effort is \(M:3{-}4\), \( W:1{-}2.\)

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, C., Rabi, I. & Sela, A. Optimal seedings in interdependent contests. Ann Oper Res 328, 1263–1285 (2023). https://doi.org/10.1007/s10479-023-05373-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05373-8

Keywords

JEL Classification

Navigation