Skip to main content
Log in

Multi-period pricing and order decisions for fresh produce with option contracts

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

With the construction of a multi-period newsvendor model, this study examines the ordering behaviour and pricing decisions of a fresh produce firm. The firm ordered the fresh produce via a wholesale price contract and option contract to determine the optimal preliminary order quantity, option order quantity, and retail pricing when faced with price-dependent random demand. We first determine the optimal decision that could be made through the use of the single-period model. The results revealed that the firm’s retail price, option order quantity and total order quantity all increased in the circulation loss rate. In contrast, the preliminary order quantity was found to decrease in the circulation loss rate. In the multi-period model, the retail price and total order quantity were unaffected by the price difference between the regular and concessionary prices, while an increase in the price difference caused an increase in the option order quantity and decrease in the preliminary order quantity in the previous period. Further, a lower discount factor for the concessionary price than for the regular price did not have as much of an effect on the retail price and total order quantity, while a rise in the discount factor led to a fall in the option order quantity as well as a rise in the preliminary order quantity in the previous period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Adhikari, A., Bisi, A., & Avittathur, B. (2020). Coordination mechanism, risk sharing, and risk aversion in a five-level textile supply chain under demand and supply uncertainty. European Journal of Operational Research, 282(1), 93–107.

    Google Scholar 

  • Bagnoli, M., & Bergstrom, T. (2005). Log-concave probability and its applications. Economic Theory, 26(2), 445–469.

    Google Scholar 

  • Barnes-Schuster, D., Bassok, Y., & Anupindi, R. (2002). Coordination and Flexibility in Supply Contracts with Options. Manufacturing & Service Operations Management, 4(3), 171–207.

    Google Scholar 

  • Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2018). Agribusiness supply chain risk management: A review of quantitative decision models. Omega-International Journal of Management Science, 79, 21–42.

    Google Scholar 

  • Berling, P. (2021). A note generalizing “an option mechanism to coordinate a dyadic supply chain bilaterally in a multi-period setting.” Omega-International Journal of Management Science, 10, 102257. https://doi.org/10.1016/j.omega.2020.102257

    Article  Google Scholar 

  • Billington, C. (2002) HP cuts risk with portfolio approach. Purchasing.com.

  • Cai, J., Zhong, M., Shang, J., & Huang, W. (2017). Coordinating VMI supply chain under yield uncertainty: Option contract, subsidy contract, and replenishment tactic. International Journal of Production Economics, 185, 196–210.

    Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., & Xiaolin, Xu. (2010). Optimization and coordination of fresh product supply chains with freshness-keeping effort. Production and Operations Management, 19, 261–278.

    Google Scholar 

  • Cai, X., Chen, J., Xiao, Y., Xiaolin, Xu., & Gang, Yu. (2013). Fresh-product supply chain management with logistics outsourcing. Omega-International Journal of Management Science, 41(4), 752–765.

    Google Scholar 

  • Chen, H., Chen, Y., Chiu, C.-H., Choi, T.-M., & Sethi, S. (2010). Coordination mechanism for the supply chain with leadtime consideration and price-dependent demand. European Journal of Operational Research, 203(1), 70–80.

    Google Scholar 

  • Chen, Xu., Hao, G., & Li, L. (2014). Channel coordination with a loss-averse retailer and option contracts. International Journal of Production Economics, 150, 52–57. https://doi.org/10.1016/j.ijpe.2013.12.004

    Article  Google Scholar 

  • Chen, Xu., Shuyao, Wu., Wang, X., & Li, D. (2018). Optimal pricing strategy for the perishable food supply chain. International Journal of Production Research, 57(9), 2755–2768.

    Google Scholar 

  • Chen, Xu., & Wan, N. (2021). Multiperiod portfolio procurement problem with option contracts. IEEE Transactions on Engineering Management, 68(4), 1072–1088.

    Google Scholar 

  • Chenarides, L., Manfredo, M., & Richards, T. J. (2020). COVID-19 and food supply chains. Applied Economic Perspectives and Policy, 43(1), 270–279.

    Google Scholar 

  • Chung, W., Talluri, S., & Narasimhan, R. (2015). Optimal pricing and inventory strategies with multiple price markdowns over time. European Journal of Operational Research, 243(1), 130–141.

    Google Scholar 

  • Eppen, G. D., & Iyer, A. V. (1997). Backup agreements in fashion buying-the value of upstream flexibility. Management Science, 43(11), 1469–1484.

    Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement risk management using option contracts: random spot price and the portfolio effect. IIE Transactions, 42(11), 793–811.

    Google Scholar 

  • Hong, Z., Zhang, Y., Yugang, Yu., & Chu, C. (2020). Dynamic pricing for remanufacturing within socially environmental incentives. International Journal of Production Research, 58(13), 3976–3997.

    Google Scholar 

  • Hu, B., Jiali, Qu., & Meng, C. (2018). Supply chain coordination under option contracts with joint pricing under price-dependent demand. International Journal of Production Economics, 205, 74–86.

    Google Scholar 

  • Inderfurth, K., Kelle, P., & Kleber, R. (2013). Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination. European Journal of Operational Research, 225(2), 298–309.

    Google Scholar 

  • Jackson, P. L., & Muckstadt, J. A. (1989). Risk pooling in a two-period, two-echelon inventory stocking and allocation problem. Naval Research Logistics, 36, 1–26.

    Google Scholar 

  • Lee, H. L. (1996). Effective inventory and service management through product and process redesign. Operations Research, 44(1), 151–159.

    Google Scholar 

  • Lee, H. L., & Tang, C. S. (1997). Modelling the costs and benefits of delayed product differentiation. Management Science, 43(1), 40–53.

    Google Scholar 

  • Li, J.-C., Zhou, Y.-w, & Huang, W. (2017). Production and procurement strategies for seasonal product supply chain under yield uncertainty with commitment-option contracts. International Journal of Production Economics, 183, 208–222.

    Google Scholar 

  • Li, X., Li, Y., & Cai, X. (2011). On a multi-period supply chain system with supplementary order opportunity. European Journal of Operational Research, 209(3), 273–284.

    Google Scholar 

  • Liu, G., Zhang, J., & Tang, W. (2014). Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand. Annals of Operations Research, 226(1), 397–416.

    Google Scholar 

  • Liu, M., Dan, B., Zhang, S., & Ma, S. (2021). Information sharing in an E-tailing supply chain for fresh produce with freshness-keeping effort and value-added service. European Journal of Operational Research, 290(2), 572–584.

    Google Scholar 

  • Liu, Y., Qin, F., Fry, M. J., & Raturi, A. S. (2012). Multi-period modeling of two-way price commitment under price-dependent demand. European Journal of Operational Research, 221(3), 546–556.

    Google Scholar 

  • Liu, Z., Hua, S., & Zhai, X. (2020). Supply chain coordination with risk-averse retailer and option contract: Supplier-led vs. Retailer-led. International Journal of Production Economics, 223, 107518. https://doi.org/10.1016/j.ijpe.2019.107518

    Article  Google Scholar 

  • Luo, J., & Chen, Xu. (2015). Risk hedging via option contracts in a random yield supply chain. Annals of Operations Research, 257(1–2), 697–719.

    Google Scholar 

  • Luo, M., Zhou, G., & Xu, H. (2022). Three-tier supply chain on temperature control for fresh agricultural products using new differential game model under two decision-making situations. Operations Management Research. https://doi.org/10.1007/s12063-021-00244-6

    Article  Google Scholar 

  • National Bureau of Statistics of China. (2021). National data 2021. https://data.stats.gov.cn/easyquery.htm?cn=C01

  • Palsule-Desai, O. D. (2013). Supply chain coordination using revenue-dependent revenue sharing contracts. Omega-International Journal of Management Science, 41(4), 780–796.

    Google Scholar 

  • Perlman, Y., Ozinci, Y., & Westrich, S. (2019). Pricing decisions in a dual supply chain of organic and conventional agricultural products. Annals of Operations Research, 314(2), 601–616.

    Google Scholar 

  • Petruzzi, N. C., & Dada, M. (1999). Pricing and the newsvendor problem: A review with extensions. Operations Research, 47(2), 183–194.

    Google Scholar 

  • Piramuthu, S., & Zhou, W. (2013). RFID and perishable inventory management with shelf-space and freshness dependent demand. International Journal of Production Economics, 144(2), 635–640.

    Google Scholar 

  • Qiao, X., Wang, Z., & Chen, H. (2021). Joint ordering and markdown policy for short lifetime products with competitive price- and freshness-based demand. IEEE Transactions on Automation Science and Engineering, 18(4), 1956–1968.

    Google Scholar 

  • Qin, Y., Wang, J., & Wei, C. (2014). Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously. International Journal of Production Economics, 152, 42–48.

    Google Scholar 

  • Wang, C., Chen, J., & Chen, Xu. (2017). Pricing and order decisions with option contracts in the presence of customer returns. International Journal of Production Economics, 193, 422–436.

    Google Scholar 

  • Wang, C., Chen, J., & Chen, Xu. (2019a). The impact of customer returns and bidirectional option contract on refund price and order decisions. European Journal of Operational Research, 274(1), 267–279.

    Google Scholar 

  • Wang, C., & Chen, Xu. (2016). Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Annals of Operations Research, 248(1–2), 471–491.

    Google Scholar 

  • Wang, M., Zhao, L., & Herty, M. (2019b). Joint replenishment and carbon trading in fresh food supply chains. European Journal of Operational Research, 277(2), 561–573.

    Google Scholar 

  • Wang, Q., Chu, B., Wang, J., & Kumakiri, Y. (2012). Risk analysis of supply contract with call options for buyers. International Journal of Production Economics, 139(1), 97–105.

    Google Scholar 

  • Wang, X., & Li, D. (2012). A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega-International Journal of Management Science, 40(6), 906–917.

    Google Scholar 

  • Xu, He. (2010). Managing production and procurement through option contracts in supply chains with random yield. International Journal of Production Economics, 126(2), 306–313.

    Google Scholar 

  • Xue, K., Li, Y., Zhen, X., & Wang, W. (2020). Managing the supply disruption risk: Option contract or order commitment contract? Annals of Operations Research, 291(1–2), 985–1026.

    Google Scholar 

  • Zaarour, N., Melachrinoudis, E., & Solomon, M. M. (2016). Maximizing revenue of end of life items in retail stores. European Journal of Operational Research, 255(1), 133–141.

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by the National Natural Science Foundation of China [71972136]; Sichuan Science and Technology Program [2022JDTD0022].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Lemma 1 Proof

When \(\left(z,{q}_{o}\right)\) is given, it is easy to find \(\frac{dE\left[\pi \left(p,z,{q}_{o}\right)\right]}{dp}=a-2bp+brw+\mu -\Theta \left(z\right)\) and \(\frac{{d}^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{d{p}^{2}}=-2b<0\). Then, \(E\left[\pi \left(p,q,{q}_{o}\right)\right]\) is a concave function on \(p\). This means that given \(\left(z,{q}_{o}\right)\), let \(\frac{dE\left[\pi \left(p,q,{q}_{o}\right)\right]}{dp}=0\) and the optimal pricing \({p}^{*}\equiv p(z)={p}_{d}^{*}-\frac{\Theta \left(z\right)}{2b}\), where \({p}_{d}^{*}=\frac{a+brw+\mu }{2b}\).

1.2 Lemma 2 Proof

When \(p\) is given, \(\frac{dE\left[\pi \left(p,z,{q}_{o}\right)\right]}{dz}=-\left(1-\beta \right)\left(e+h\right)F\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]-\left(p+g-e\right)\left(1-\beta \right)F\left[z\left(1-\beta \right)\right]+\left(p+g\right)\left(1-\beta \right)-w\), \(\frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {z}^{2}}=-{\left(1-\beta \right)}^{2}\left(e+h\right)f\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]-{\left(1-\beta \right)}^{2}\left(p+g-e\right)f\left[z\left(1-\beta \right)\right]<0\), \(\frac{\partial E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}}=\left(1-\beta \right)\left(e+h\right)F\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]-\left[o+\left(1-\beta \right)e-w\right]\), \(\frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}^{2}}=-{\left(1-\beta \right)}^{2}\left(e+h\right)f\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]<0\), \(\frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial z\partial {q}_{o}}=\frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}\partial z}={\left(1-\beta \right)}^{2}\left(e+h\right)f\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]\). Since \(\frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {z}^{2}}<0\) and \(\left|\begin{array}{cc}\frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {z}^{2}}& \frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial z\partial {q}_{o}}\\ \frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}\partial z}& \frac{{\partial }^{2}E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}^{2}}\end{array}\right|={\left(1-\beta \right)}^{4}\left(e+h\right)\left(p+g-e\right)f\left[z\left(1-\beta \right)\right]f\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]>0\), the Hessian matrix of \(E\left[\pi \left(p,z,{q}_{o}\right)\right]\) is negative definite. Thus, \(E\left[\pi \left(p,z,{q}_{o}\right)\right]\) is concave in \(z\) and \({q}_{o}\) simultaneously. The unique \({\mathrm{z}}^{*}\) and unique \({q}_{o}^{*}\) are set by \(\frac{dE\left[\pi \left(p,z,{q}_{o}\right)\right]}{dz}=0\) and \(\frac{\partial E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}}=0\), i.e., \({z}^{*}=r{F}^{-1}\left[1-\frac{o}{\left(1-\beta \right)\left(p+g-e\right)}\right]\mathrm{ and }{q}_{o}^{*}={z}^{*}-r{F}^{-1}\left[\frac{o+\left(1-\beta \right)e-w}{\left(1-\beta \right)\left(e+h\right)}\right]\).

1.3 Proposition 1 Proof

We first prove the condition that there exists an unique optimal retail price \({p}^{*}\). Let \({z}^{*}\equiv z(p)\) and \({q}_{o}^{*}\equiv {q}_{o}(p)\). Substituting \({z}^{*}\equiv z(p)\), \({q}_{o}^{*}\equiv {q}_{o}(p)\) into \(E\left[\pi \left(p,z,{q}_{o}\right)\right]\), we can obtain \(E\left[\pi \left(p\right)\right]=\left(p-rw\right)y\left(p\right)+\left(p+g-e\right){\int }_{A}^{(1-\beta ){z}^{*}}\varepsilon f\left(\varepsilon \right)d\varepsilon -g\mu -\left(e+h\right){\int }_{A}^{\left(1-\beta \right){z}^{*}-\left(1-\beta \right){q}_{o}^{*}}\varepsilon f\left(\varepsilon \right)d\varepsilon +\left[o+\left(1-\beta \right)e-w\right]{rF}^{-1}\left[\frac{o+\left(1-\beta \right)e-w}{\left(1-\beta \right)\left(e+h\right)}\right]\). Since \(\frac{dz(p)}{dp}=\frac{d{q}_{o}(p)}{dp}=\frac{o}{{{\left(1-\beta \right)}^{2}\left(p+g-e\right)}^{2}f\left[{z}^{*}\left(1-\beta \right)\right]}\), then we have \(\frac{dE\left[\pi \left(p\right)\right]}{dp}=y\left(p\right)-b\left(p-rw\right)+{\int }_{A}^{(1-\beta ){z}^{*}}\varepsilon f\left(\varepsilon \right)d\varepsilon +{z}^{*}\frac{o}{p+g-e}\), \(\frac{{d}^{2}E\left[\pi \left(p\right)\right]}{d{p}^{2}}=-2b+\frac{{\left\{1-F\left[{z}^{*}\left(1-\beta \right)\right]\right\}}^{2}}{\left(p+g-e\right)f\left[{z}^{*}\left(1-\beta \right)\right]}\). Consequently, the prerequisite for an unique optimal retail price \({p}^{*}\) is \(\frac{{d}^{2}E\left[\pi \left(p\right)\right]}{d{p}^{2}}<0\), i.e.\(h\left[{z}^{*}\left(1-\beta \right)\right]>\frac{1-F\left[{z}^{*}\left(1-\beta \right)\right]}{2b\left(p+g-e\right)}\).

We then prove the condition that there exists an unique stocking factor \({z}^{*}\). Substituting \({p}^{*}\equiv p(z)\) into \(\left[\pi \left(p,z,{q}_{o}\right)\right]\), we can obtain \(\frac{\partial E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial z}=\left[{p}_{d}^{*}-\frac{\Theta \left(z\right)}{2b}+g-e\right]\left(1-\beta \right)\left\{1-F\left[z\left(1-\beta \right)\right]\right\}-\left(1-\beta \right)\left(e+h\right)F\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]-\left[w-\left(1-\beta \right)e\right]\), \(\frac{\partial E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}}=\left(1-\beta \right)\left(e+h\right)F\left[\left({z-q}_{o}\right)\left(1-\beta \right)\right]-\left[o+\left(1-\beta \right)e-w\right]\). From Lemma 1, let \(\frac{\partial E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial z}=0\), and \(\frac{\partial E\left[\pi \left(p,z,{q}_{o}\right)\right]}{\partial {q}_{o}}=0\), respectively. Then, we obtain that the unique \({z}^{*}\left({z}^{*}\in \left[A,B\right]\right)\) satisfies \(\left[{p}_{d}^{*}+g-\frac{\Theta \left({z}^{*}\right)}{2b}-e\right]\left\{1-F\left[{z}^{*}\left(1-\beta \right)\right]\right\}-o=0\).

1.4 Corollary 1 Proof

From Lemmas 1 and 2, it can be seen that the handling cost \(h\) has no impact on the optimal pricing \({p}^{*}\), the optimal inventory factor \({z}^{*}\) and the optimal total quantity \({q}^{*}\), but only on the optimal preliminary order quantity \({q}_{w}^{*}\) and the optimal option order quantity \({q}_{o}^{*}\), so we can obtain \(\frac{{dq}_{w1}^{*}}{dh}=-\frac{o+\left(1-\beta \right)e-w}{{\left[\left(1-\beta \right)\left(e+h\right)\right]}^{2}f\left[\left({{z}^{*}-q}_{o}^{*}\right)\left(1-\beta \right)\right]}<0\), \(\frac{{dq}_{o1}^{*}}{dh}=\frac{o+\left(1-\beta \right)e-w}{{\left[\left(1-\beta \right)\left(e+h\right)\right]}^{2}f\left[\left({{z}^{*}-q}_{o}^{*}\right)\left(1-\beta \right)\right]}>0\).

1.5 Proposition 2 Proof

For the period \(i(i=\mathrm{1,2}\cdots \left(N{-}1\right))\), when \(\left({z}_{i},{q}_{oi}\right)\) is given, \(\frac{dE\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{d{p}_{i}}=a{-}2b{p}_{i}+br{w}_{i}+\mu {-}{\Theta }_{i}\left({z}_{i}\right)\) and \(\frac{{d}^{2}E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{d{p}_{i}^{2}}={-}2b<0\). Thus, \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\) is concave in \({p}_{i}\). Let\(\frac{dE\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{d{p}_{i}}=0\), the period \(i\) optimal pricing\({p}_{i}^{*}\equiv p\left({z}_{i}\right)={p}_{id}^{*}{-}\frac{{\Theta }_{i}\left({z}_{i}\right)}{2b}\), where \({p}_{di}^{*}=\frac{a+br{w}_{i}+\mu }{2b}\). Then, when \({p}_{i}\) is given, \(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {z}_{i}}={-}\left(1{-}\beta \right)[{e}_{i}+\tau +{m}_{i+1}{-}r{w}_{i+1}] F[\left({{z}_{i}{-}q}_{oi}\right)(1{-}\beta)]{-}({p}_{i}+g{-}{e}_{i})(1{-}\beta)F[{z}_{i}\left(1{-}\beta \right)]+\left({p}_{i}+g\right)\left(1{-}\beta \right){-}{w}_{i}\), \( \frac{{\partial ^{2} E[ {\pi _{1} \left( {p_{1} ,z_{1} ,q_{{o1}} } \right)} ]}}{{\partial z_{1}^{2} }} = - \left( {1 - \beta } \right)^{2} \left[ {e_{i} + \tau + m_{{i + 1}} - rw_{{i + 1}} } \right]f\left[ {\left( {z_{i} - q_{{oi}} } \right)\left( {1 - \beta } \right)} \right] - \left( {p_{i} + g - e_{i} } \right)\left( {i - \beta } \right)^{2} f\left[ {z_{i} \left( {i - \beta } \right)} \right] < 0 \),\(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {q}_{oi}}=\left(1{-}\beta \right)\left[{e}_{i}+\tau +{m}_{i+1}{-}r{w}_{i+1}\right] F\left[\left({{z}_{i}{-}q}_{oi}\right)\left(1{-}\beta \right)\right]{-}\left[{o}_{i}+\left(1{-}\beta \right){e}_{i}{-}{w}_{i}\right]\),\( \frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial q_{{oi}}^{2} }} = - \left( {1 - \beta } \right)^{2} \left[ {e_{i} + \tau + m_{{i + 1}} - rw_{{i + 1}} } \right]f\left[ {\left( {z_{i} - q_{{oi}} } \right)\left( {i - \beta } \right)} \right] < 0 \),\( \frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i} \partial q_{{oi}} }} = \frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial q_{{oi}} \partial z_{i} }} = \left( {1 - \beta } \right)^{2} \left[ {e_{i} + \tau + m_{{i + 1}} - rw_{{i + 1}} } \right]f\left[ {\left( {z_{i} - q_{{oi}} } \right)\left( {1 - \beta } \right)} \right] \). Since \( \frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i}^{2} }} < 0 \), \( \left| {\begin{array}{*{20}c} {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i}^{2} }}} & {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i} \partial q_{{oi}} }}} \\ {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial q_{{oi}} \partial z_{i} }}} & {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial q_{{oi}}^{2} }}} \\ \end{array} } \right| = \left( {1 - \beta } \right)^{4} \left[ {e_{i} + \tau + m_{{i + 1}} - rw_{{i + 1}} } \right]\left( {p_{i} + g - e_{i} } \right)f\left( {z_{i} } \right)f\left[ {\left( {z_{i} - q_{{oi}} } \right)\left( {1 - \beta } \right)} \right] > 0 \), the Hessian Matrix of \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\) is negative definite. Thus, \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\) is concave in \({z}_{i}\) and \({q}_{oi}\) simultaneously. The unique \({z}_{i}^{*}\) and unique \({q}_{oi}^{*}\) are set by \(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {z}_{i}}=0\) and \(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {q}_{oi}}=0\), i.e., \({z}_{i}^{*}=r{F}^{-1}\left[1-\frac{{o}_{i}}{\left(1-\beta \right)\left({p}_{i}+g-{e}_{i}\right)}\right]\mathrm{ and }{q}_{oi}^{*}={z}_{i}^{*}-r{F}^{-1}\left\{\frac{{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}}{\left(1-\beta \right)\left[{e}_{i}+\tau +{m}_{i+1}-r{w}_{i+1}\right]}\right\}\). Substituting \({p}_{i}^{*}\equiv p({z}_{i})\) into\(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\), let \(\frac{\partial E\left[{\pi }_{i}\left(p({z}_{i}),{z}_{i},{q}_{oi}\right)\right]}{\partial {z}_{i}}=0\), and \(\frac{\partial E\left[{\pi }_{i}\left(p({z}_{i}),{z}_{i},{q}_{oi}\right)\right]}{\partial {q}_{oi}}=0\), respectively. Then, we obtain that the unique \({z}_{i}^{*}({z}_{i}^{*}\in \left[A,B\right])\) satisfies \(\left[{p}_{di}^{*}+g-\frac{{\Theta }_{i}\left({z}_{i}^{*}\right)}{2b}-{e}_{i}\right]\left\{1-F\left[{z}_{i}\left(1-\beta \right)\right]\right\}-{o}_{i}=0\).

Let \({z}_{i}^{*}\equiv {z}_{i}\left({p}_{i}\right)\) and \({q}_{oi}^{*}\equiv {q}_{oi}({p}_{i})\) Substituting \({z}_{i}^{*}\equiv {z}_{i}\left({p}_{i}\right)\), \({q}_{oi}^{*}\equiv {q}_{oi}({p}_{i})\) into \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\), we can obtain \( E\left[ {\pi _{i} \left( {p_{i} } \right)} \right] = \left( {p_{i} - rw_{i} } \right)y_{i} \left( {p_{i} } \right) + \left( {p_{i} + g - e_{i} } \right)\smallint _{A}^{{\left( {1 - \beta } \right)z_{i}^{*} }} \varepsilon _{i} f\left( {\varepsilon _{i} } \right)d\varepsilon _{i} - g\mu - \left[ {e_{i} + \tau + m_{{i + 1}} - rw_{{i + 1}} } \right]\smallint _{A}^{{\left( {1 - \beta } \right)z_{i}^{*} - \left( {1 - \beta } \right)q_{{oi}}^{*} }} \varepsilon _{i} f\left( {\varepsilon _{i} } \right)d\varepsilon _{i} + \left[ {o_{i} + \left( {1 - \beta } \right)e_{i} - w_{i} } \right]rF^{{ - i}} \left\{ {\frac{{o_{i} + \left( {1 - \beta } \right)e_{i} - w_{i} }}{{\left( {1 - \beta } \right)\left[ {e_{i} + \tau + m_{{i + 1}} - rw_{{i + 1}} } \right]}}} \right\} + \left[ {rw_{i} - m_{{i + 1}} } \right]\Lambda _{{i - 1}} \left( {z_{{i - 1}}^{*} ,q_{{o\left( {i - 1} \right)}}^{*} } \right) \), \(\frac{dE\left[{\pi }_{i}\left({p}_{i}\right)\right]}{d{p}_{i}}={y}_{i}\left({p}_{i}\right)-b\left({p}_{i}-{{r}_{i}w}_{i}\right)+{\int }_{A}^{\left(1-\beta \right){z}_{i}^{*}}{\varepsilon }_{i}f\left({\varepsilon }_{i}\right)d{\varepsilon }_{i}+{z}_{i}^{*}\frac{{o}_{i}}{{p}_{i}+g-{e}_{i}}\), \(\frac{{d}^{2}E\left[{\pi }_{i}\left({p}_{i}\right)\right]}{d{p}_{i}^{2}}=-2b+\frac{1-F\left[{z}_{i}^{*}\left(1-\beta \right)\right]}{\left({p}_{i}^{*}+g-{e}_{i}\right)h\left[{z}_{i}^{*}\left(1-\beta \right)\right]}\). Consequently, the prerequisite for an unique optimal retail price \({p}_{i}^{*}\) is \(\frac{{d}^{2}E\left[{\pi }_{i}\left({p}_{i}\right)\right]}{d{p}_{i}^{2}}<0\), i.e.\(2b>\frac{1-F\left[{z}_{i}^{*}\left(1-\beta \right)\right]}{\left({p}_{i}^{*}+g-{e}_{i}\right)h\left[{z}_{i}^{*}\left(1-\beta \right)\right]}\)

For the \(N\) sales period, the proof is the same as above except that \({q}_{oN}^{*}={z}_{N}^{*}-r{F}^{-1}\left\{\frac{{o}_{N}+\left(1-\beta \right){e}_{N}-{w}_{N}}{\left(1-\beta \right)\left[{e}_{N}+h\right]}\right\}\).

1.6 Corollary 2 Proof

From Proposition 2, it can be seen that the freshness-keeping cost \(\tau \) has no impact on the optimal pricing \({p}_{i}^{*}\), the optimal inventory factor \({z}_{i}^{*}\) and the optimal total quantity \({q}_{i}^{*}\), but only on the optimal preliminary order quantity \({q}_{wi}^{*}\) and the optimal option order quantity \({q}_{oi}^{*}\), so we can obtain \(\frac{{dq}_{wi}^{*}}{d\tau }=-\frac{{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}}{{\left(1-\beta \right)}^{2}{\left[{e}_{i}+\tau +{m}_{i+1}-r{w}_{i+1}\right]}^{2}f\left[\left({z}_{i}^{*}-{q}_{oi}^{*}\right)\left(1-\beta \right)\right]}<0\), \(\frac{{dq}_{oi}^{*}}{d\tau }=\frac{{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}}{{\left(1-\beta \right)}^{2}{\left[{e}_{i}+\tau +{m}_{i+1}-r{w}_{i+1}\right]}^{2}f\left[\left({z}_{i}^{*}-{q}_{oi}^{*}\right)\left(1-\beta \right)\right]}>0\).

1.7 Corollary 3 Proof

From Proposition 2, it seen by that the price difference \({m}_{i}\) has no impact on the optimal pricing \({p}_{i}^{*}\), the optimal inventory factor \({z}_{i}^{*}\) and the optimal total quantity \({q}_{i}^{*}\), but only on the optimal preliminary order quantity \({q}_{wi}^{*}\) and the optimal option order quantity \({q}_{oi}^{*}\), so we can obtain \(\frac{{dq}_{oi}^{*}}{d{m}_{i+1}}=\frac{{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}}{{\left(1-\beta \right)}^{2}{\left[{e}_{i}+\tau +{m}_{i+1}-r{w}_{i+1}\right]}^{2}f\left[\left({z}_{i}^{*}-{q}_{oi}^{*}\right)\left(1-\beta \right)\right]}>0\), \(\frac{{dq}_{wi}^{*}}{d{m}_{i+1}}=-\frac{{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}}{{\left(1-\beta \right)}^{2}{\left[{e}_{i}+\tau +{m}_{i+1}-r{w}_{i+1}\right]}^{2}f\left[\left({z}_{i}^{*}-{q}_{oi}^{*}\right)\left(1-\beta \right)\right]}<0\), and \(\frac{{dq}_{oi}^{*}}{d{m}_{i+1}}=-\frac{{dq}_{wi}^{*}}{d{m}_{i+1}}\).

1.8 Proposition 3 Proof

For the period\(i(i=\mathrm{1,2}\cdots \left(N-1\right))\), when \(\left({z}_{i},{q}_{oi}\right)\) is given, \(\frac{dE\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{d{p}_{i}}=a-2b{p}_{i}+br{w}_{i}+\mu -{\Theta }_{i}\left({z}_{i}\right)-\left(1-{\theta }_{i}\right){\Lambda }_{i-1}\left({z}_{i-1},{q}_{o\left(i-1\right)}\right)\) and\(\frac{{d}^{2}E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{d{p}_{i}^{2}}=-2b<0\). Thus, \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\) is concave in\({p}_{i}\). Let\(\frac{dE\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{d{p}_{i}}=0\), the period \(i\) optimal pricing\({p}_{i}^{*}\equiv p\left({z}_{i},{z}_{i-1},{q}_{o\left(i-1\right)}\right)={p}_{id}^{*}-\frac{{\Theta }_{i}\left({z}_{i}\right)}{2b}-\frac{\left(1-{\theta }_{i}\right){\Lambda }_{i-1}\left({z}_{i-1},{q}_{o\left(i-1\right)}\right)}{2b}\), where\({p}_{di}^{*}=\frac{a+br{w}_{i}+\mu }{2b}\). Then, when \({p}_{i}\) is given, \(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {z}_{i}}=-\left(1-\beta \right)\left[(1-{\theta }_{i+1}){p}_{i+1}+{e}_{i}+\tau -r{w}_{i+1}\right]F\left[\left({{z}_{i}-q}_{oi}\right)\left(1-\beta \right)\right]-\left({p}_{i}+g-{e}_{i}\right)\left(1-\beta \right)F\left[{z}_{i}\left(1-\beta \right)\right]+\left({p}_{i}+g\right)\left(1-\beta \right)-{w}_{i}\),\(\frac{{\partial }^{2}E\left[{\pi }_{1}\left({p}_{1},{z}_{1},{q}_{o1}\right)\right]}{\partial {z}_{1}^{2}}=-{\left(1-\beta \right)}^{2}\left[(1-{\theta }_{i+1}){p}_{i+1}+{e}_{i}+\tau -r{w}_{i+1}\right]f\left[\left({{z}_{i}-q}_{oi}\right)\left(1-\beta \right)\right]-\left({p}_{i}+g-{e}_{i}\right){\left(i-\beta \right)}^{2}f\left[{z}_{i}\left(i-\beta \right)\right]<0\),\(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {q}_{oi}}=\left(1-\beta \right)[(1-{\theta }_{i+1}){p}_{i+1}+{e}_{i}+\tau -r{w}_{i+1}]F[\left({{z}_{i}-q}_{oi}\right)\left(1-\beta \right)]-[{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}]\), \( \frac{{\partial ^{2} E[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} ]}}{{\partial q_{{oi}}^{2} }} = - \left( {1 - \beta } \right)^{2} [ {(1 - \theta _{{i + 1}} )p_{{i + 1}} + e_{i} + \tau - rw_{{i + 1}} } ]f[ {\left( {z_{i} - q_{{oi}} } \right)\left( {i - \beta } \right)} ] < 0 \), \( \frac{{\partial ^{2} E[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} ]}}{{\partial z_{i} \partial q_{{oi}} }} = \frac{{\partial ^{2} E[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} ]}}{{\partial q_{{oi}} \partial z_{i} }} = \left( {1 - \beta } \right)^{2} [ {( {1 - \theta _{{i + 1}} } )p_{{i + 1}} + e_{i} + \tau - rw_{{i + 1}} } ]f[ ( z_{i} - q_{{oi}} )( 1 - \beta ) ] \). Since\( \frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i}^{2} }} < 0 \), \( \left| {\begin{array}{*{20}c} {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i}^{2} }}} & {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial z_{i} \partial q_{{oi}} }}} \\ {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial q_{{oi}} \partial z_{i} }}} & {\frac{{\partial ^{2} E\left[ {\pi _{i} \left( {p_{i} ,z_{i} ,q_{{oi}} } \right)} \right]}}{{\partial q_{{oi}}^{2} }}} \\ \end{array} } \right| = \left( {1 - \beta } \right)^{4} \left[ {(1 - \theta _{{i + 1}} )p_{{i + 1}} + e_{i} + \tau - rw_{{i + 1}} } \right]\left( {p_{i} + g - e_{i} } \right)f\left( {z_{i} } \right)f\left[ {\left( {z_{i} - q_{{oi}} } \right)\left( {1 - \beta } \right)} \right] > 0 \), the Hessian matrix of \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\) is negative definite. Thus, \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\) is concave in \({z}_{i}\) and \({q}_{oi}\) simultaneously. The unique \({z}_{i}^{*}\) and unique \({q}_{oi}^{*}\) are set by \(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {z}_{i}}=0\) and\(\frac{\partial E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]}{\partial {q}_{oi}}=0\), i.e.,\({z}_{i}^{*}=r{F}^{-1}\left[1-\frac{{o}_{i}}{\left(1-\beta \right)\left({p}_{i}+g-{e}_{i}\right)}\right]\mathrm{ and }{q}_{oi}^{*}={z}_{i}^{*}-r{F}^{-1}\left\{\frac{{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}}{\left(1-\beta \right)\left[(1-{\theta }_{i+1}){p}_{i+1}+{e}_{i}+\tau -r{w}_{i+1}\right]}\right\}\). Substituting\({p}_{i}^{*}\equiv p({z}_{i},{z}_{i-1},{q}_{o\left(i-1\right)})\), \({p}_{i+1}^{*}\equiv p({z}_{i+1},{z}_{i},{q}_{oi})\) into\(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\), let \(\frac{\partial E\left[{\pi }_{i}\left(p({z}_{i}),{z}_{i},{q}_{oi}\right)\right]}{\partial {z}_{i}}=0\), and\(\frac{\partial E\left[{\pi }_{i}\left(p({z}_{i}),{z}_{i},{q}_{oi}\right)\right]}{\partial {q}_{oi}}=0\), respectively. Then, we obtain that the unique \({z}_{i}^{*}({z}_{i}^{*}\in \left[A,B\right])\) satisfies\(\left[{p}_{di}^{*}+g-\frac{{\Theta }_{i}\left({z}_{i}^{*}\right)}{2b}-\frac{\left(1-{\theta }_{i}\right){\Lambda }_{i-1}\left({z}_{i-1}^{*},{q}_{o\left(i-1\right)}^{*}\right)}{2b}-{e}_{i}\right]\left\{1-F\left[{z}_{i}\left(1-\beta \right)\right]\right\}-{o}_{i}=0\).

Let \({z}_{i}^{*}\equiv {z}_{i}\left({p}_{i}\right)\), \({q}_{oi}^{*}\equiv {q}_{oi}({p}_{i})\) and \({q}_{o\left(i-1\right)}^{*}\equiv {q}_{o\left(i-1\right)}({p}_{i})\). Substituting \({z}_{i}^{*}\equiv {z}_{i}\left({p}_{i}\right)\), \({q}_{oi}^{*}\equiv {q}_{oi}({p}_{i})\) and \({q}_{o\left(i-1\right)}^{*}\equiv {q}_{o\left(i-1\right)}({p}_{i})\) into \(E\left[{\pi }_{i}\left({p}_{i},{z}_{i},{q}_{oi}\right)\right]\), we can obtain \( E\left[ {\pi _{i} \left( {p_{i} } \right)} \right] = \left( {p_{i} - rw_{i} } \right)y_{i} \left( {p_{i} } \right) + \left( {p_{i} + g - e_{i} } \right)\smallint _{A}^{{\left( {1 - \beta } \right)z_{i}^{*} }} \varepsilon _{i} f\left( {\varepsilon _{i} } \right)d\varepsilon _{i} - g\mu - \left[ {\left( {1 - \theta _{{i + 1}} } \right)p_{{i + 1}} + e_{i} + \tau - rw_{{i + 1}} } \right]\smallint _{A}^{{\left( {1 - \beta } \right)z_{i}^{*} - \left( {1 - \beta } \right)q_{{oi}}^{*} }} \varepsilon _{i} f\left( {\varepsilon _{i} } \right)d\varepsilon _{i} + [ o_{i} + ( {1 - \beta } )e_{i} - w_{i} ]rF^{{ - i}} \left\{ {\frac{{o_{i} + \left( {1 - \beta } \right)e_{i} - w_{i} }}{{\left( {1 - \beta } \right)\left[ {\left( {1 - \theta _{{i + 1}} } \right)p_{{i + 1}} + e_{i} + \tau - rw_{{i + 1}} } \right]}}} \right\} - [ {( {1 - \theta _{i} } )p_{i} - rw_{i} } ]\Lambda _{{i - 1}} ( {z_{{i - 1}}^{*} ,q_{{o( {i - 1} )}}^{*} } ) + E [\pi _{{i - 1}} \left( {p_{i} } \right) ] \), \(\frac{dE\left[{\pi }_{i}\left({p}_{i}\right)\right]}{d{p}_{i}}={y}_{i}\left({p}_{i}\right)-b\left({p}_{i}-{{r}_{i}w}_{i}\right)+{\int }_{A}^{\left(1-\beta \right){z}_{i}^{*}}{\varepsilon }_{i}f\left({\varepsilon }_{i}\right)d{\varepsilon }_{i}+{z}_{i}^{*}\frac{{o}_{i}}{{p}_{i}+g-{e}_{i}}-\left(1-{\theta }_{i}\right){\Lambda }_{i-1}\left({z}_{i-1}^{*},{q}_{o\left(i-1\right)}^{*}\right)\), \(\frac{{d}^{2}E\left[{\pi }_{i}\left({p}_{i}\right)\right]}{d{p}_{i}^{2}}=-2b+\frac{1-F\left[{z}_{i}^{*}\left(1-\beta \right)\right]}{\left({p}_{i}^{*}+g-{e}_{i}\right)h\left[{z}_{i}^{*}\left(1-\beta \right)\right]}+\frac{{\left(1-\theta \right)}^{2}{F}^{2}\left[\left({z}_{i-1}^{*}-{q}_{o\left(i-1\right)}^{*}\right)\left(1-\beta \right)\right]}{\left[{\left(1-{\theta }_{i}\right){p}_{i}^{*}+e}_{i-1}+\tau -r{w}_{i}\right]f\left[\left({z}_{i-1}^{*}-{q}_{o\left(i-1\right)}^{*}\right)\left(1-\beta \right)\right]}\). Consequently, the prerequisite for an unique optimal retail price \({p}_{i}^{*}\) is \(\frac{{d}^{2}E\left[{\pi }_{i}\left({p}_{i}\right)\right]}{d{p}_{i}^{2}}<0\), i.e.\(2b>\frac{1-F\left[{z}_{i}^{*}\left(1-\beta \right)\right]}{\left({p}_{i}^{*}+g-{e}_{i}\right)h\left[{z}_{i}^{*}\left(1-\beta \right)\right]}+\frac{{\left(1-{\theta }_{i}\right)}^{2}{F}^{2}\left[\left({z}_{i-1}^{*}-{q}_{o\left(i-1\right)}^{*}\right)\left(1-\beta \right)\right]}{\left[{\left(1-{\theta }_{i}\right){p}_{i}^{*}+e}_{i-1}+\tau -r{w}_{i}\right]f\left[\left({z}_{i-1}^{*}-{q}_{o\left(i-1\right)}^{*}\right)\left(1-\beta \right)\right]}\).

For the \(N\) sales period, the proof is the same as above except that \({q}_{oN}^{*}={z}_{N}^{*}-r{F}^{-1}\left\{\frac{{o}_{N}+\left(1-\beta \right){e}_{N}-{w}_{N}}{\left(1-\beta \right)\left[{e}_{N}+h\right]}\right\}\).

For the first sales period, it is the same as the single-period model except that \({q}_{o1}^{*}={z}_{i}^{*}-r{F}^{-1}\left\{\frac{{o}_{1}+\left(1-\beta \right){e}_{1}-{w}_{1}}{\left(1-\beta \right)\left[\left(1-{\theta }_{2}\right){p}_{2}^{*}+{e}_{1}+\tau -r{w}_{2}\right]}\right\}\).

1.9 Corollary 5 Proof

From Proposition 3 and Corollary 4, for the \(i(i=\mathrm{1,2}\cdots \left(N-1\right))\) sales period, we can obtain \(\frac{{dq}_{oi}{\prime}}{d{\theta }_{i+1}}=-\frac{{p}_{i+1}^{*}\left[{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}\right]}{{\left(1-\beta \right)}^{3}{\left[(1-{\theta }_{i+1}){p}_{i}^{*}+{e}_{i}+\tau -r{w}_{i+1}\right]}^{2}f\left[\left({z}_{i}^{*}-{q}_{oi}^{*}\right)\left(1-\beta \right)\right]}<0\), \(\frac{{dq}_{wi}{\prime}}{d{\theta }_{i+1}}=\frac{{p}_{i+1}^{*}\left[{o}_{i}+\left(1-\beta \right){e}_{i}-{w}_{i}\right]}{{\left(1-\beta \right)}^{3}{\left[(1-{\theta }_{i+1}){p}_{i}^{*}+{e}_{i}+\tau -r{w}_{i+1}\right]}^{2}f\left[\left({z}_{i}^{*}-{q}_{oi}^{*}\right)\left(1-\beta \right)\right]}>0\), and \(\frac{{dq}_{oi}{\prime}}{d{\theta }_{i+1}}=-\frac{{dq}_{wi}{\prime}}{d{\theta }_{i+1}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, C., Jia, D. et al. Multi-period pricing and order decisions for fresh produce with option contracts. Ann Oper Res 335, 79–110 (2024). https://doi.org/10.1007/s10479-023-05515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05515-y

Keywords

Navigation