Skip to main content

Advertisement

Log in

Data analytics-based auditing: a case study of fraud detection in the banking context

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

For a long time, decision-making in auditing was limited to a risk-oriented recommendation and consisted of the rigorous analysis of a sample of data. The new trend in the audit decision process focuses on the use of decision support systems (DSSs) founded on data analytics (DA) to better concentrate on in-depth analysis. This study examines how DA can improve the audit decision-making approach in the banking sector. We show that DA techniques can improve the quality of audit decision-making within banks and highlight the advantages associated with mastering these techniques, which results in a more effective and efficient audit of digital banking transactions. We propose an artifact-based data analytics-driven decision support system (DA-DSS) for an automatic fraud detection system supported by DA. The proposed DA-DSS artifact with a random forest classifier at its core is a promising innovation in the field of electronic transaction fraud detection. The results show that the random forest classifier can accurately classify the data generated by this artifact with an accuracy varying from 88 to 93% using transaction data collected from 2021 to 2022. Other classifiers including k-nearest neighbors (KNN) are also used, with a classification rate ranging from 66 to 88% for the same transaction datasets. These results show that the proposed DA-DSS with random forest can significantly improve auditing by reducing the time required for data analysis and increasing the results’ accuracy. Management can use the proposed artifact to enhance and speed up the decision-making process within their organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu Afifa, M., Marei, Y., Saleh, I., & Othman, O. H. (2022). 2022//). Big Data Analytics and Audit Quality: Evidence from Canada. Digital Economy, Business Analytics, and Big Data Analytics Applications.

  • Aburbeian, A. M., & Ashqar, H. I. (2023). 2023//). Credit Card Fraud Detection Using Enhanced Random Forest Classifier for Imbalanced Data. Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23), Cham.

  • Adewumi, A. O., & Akinyelu, A. A. (2017). A survey of machine-learning and nature-inspired based credit card fraud detection techniques. International Journal of System Assurance Engineering and Management, 8(2), 937–953.

    Google Scholar 

  • Ajzen, I. (1980). Understanding attitudes and predictiing social behavior. Englewood cliffs.

  • Akinbowale, O. E., Mashigo, P., & Zerihun, M. F. (2023). The integration of forensic accounting and big data technology frameworks for internal fraud mitigation in the banking industry. Cogent Business & Management, 10(1), 2163560. https://doi.org/10.1080/23311975.2022.2163560.

    Article  Google Scholar 

  • Al-Akra, M., Abdel-Qader, W., & Billah, M. (2016). Internal auditing in the Middle East and North Africa: A literature review. Journal of International Accounting Auditing and Taxation, 26, 13–27. https://doi.org/10.1016/j.intaccaudtax.2016.02.004.

    Article  Google Scholar 

  • Alali, F. A., & Romero, S. (2013). Benford’s Law: Analyzing a decade of financial data. Journal of Emerging Technologies in Accounting, 10(1), 1–39.

    Article  Google Scholar 

  • Alles, M., & Gray, G. L. (2016). Incorporating big data in audits: Identifying inhibitors and a research agenda to address those inhibitors. International Journal of Accounting Information Systems, 22, 44–59.

    Article  Google Scholar 

  • Alles, M., Brennan, G., Kogan, A., & Vasarhelyi, M. A. (2018). Continuous Monitoring of Business Process Controls: A Pilot Implementation of a Continuous auditing System at Siemens1. Continuous auditing. Emerald Publishing Limited.

  • Andriosopoulos, D., Doumpos, M., Pardalos, P. M., & Zopounidis, C. (2019). Computational approaches and data analytics in financial services: A literature review. Journal of the Operational Research Society, 70(10), 1581–1599.

    Article  Google Scholar 

  • Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017). Big Data and analytics in the modern audit engagement: Research needs. Auditing: A Journal of Practice & Theory, 36(4), 1–27.

    Article  Google Scholar 

  • Ardito, L., Scuotto, V., Del Giudice, M., & Petruzzelli, A. M. (2019). A bibliometric analysis of research on Big Data Analytics for business and management. Management Decision, 57(8), 1993–2009. https://doi.org/10.1108/MD-07-2018-0754.

    Article  Google Scholar 

  • Ariav, G., & Ginzberg, M. J. (1985). DSS design: A systemic view of decision support. Communications of the ACM, 28(10), 1045–1052.

    Article  Google Scholar 

  • Barr-Pulliam, D., Brown-Liburd, H. L., & Sanderson, K. A. (2022). The effects of the internal control opinion and use of audit data analytics on perceptions of audit quality, assurance, and auditor negligence. Auditing: A Journal of Practice & Theory, 41(1), 25–48.

    Article  Google Scholar 

  • Bartoszewicz, A., & Rutkowska-Ziarko, A. (2021). Practice of Non-financial Reports Assurance Services in the Polish audit market—the range, limits and prospects for the future. Risks, 9(10), 176.

    Article  Google Scholar 

  • Baskerville, R., Baiyere, A., Gregor, S., Hevner, A., & Rossi, M. (2018). Design science research contributions: Finding a balance between artifact and theory. Journal of the Association for Information Systems, 19(5), 3.

    Article  Google Scholar 

  • Beck, R., Weber, S., & Gregory, R. W. (2013). J. I. S. F. Theory-generating design science research. 15, 637–651.

  • Beechner, A. B., & Koch, J. E. (1997). Integrating ISO 9001 and ISO 14001. Quality Progress, 30(2), 33.

    Google Scholar 

  • Biglari, V., & Pourabedin, Z. (2022). Application of Data Analysis and Big Data in Auditing. In T. Chaiechi & J. Wood (Eds.), Community Empowerment, Sustainable Cities, and Transformative Economies (pp. 111–128). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-5260-8_8.

  • Boskou, G., Kirkos, E., & Spathis, C. (2019). Classifying internal audit quality using textual analysis: The case of auditor selection. Managerial Auditing Journal, 34(8), 924–950. https://doi.org/10.1108/MAJ-01-2018-1785.

    Article  Google Scholar 

  • Braun, R. L., & Davis, H. E. (2003). Computer-assisted audit tools and techniques: Analysis and perspectives. Managerial Auditing Journal, 18(9), 725–731. https://doi.org/10.1108/02686900310500488.

    Article  Google Scholar 

  • Brown, C. E., Wong, J. A., & Baldwin, A. A. (2007). A review and analysis of the existing research streams in continuous auditing. Journal of Emerging Technologies in Accounting, 4(1), 1–28.

    Article  Google Scholar 

  • Brown-Liburd, H., & Vasarhelyi, M. A. (2015). Big Data and audit evidence. Journal of Emerging Technologies in Accounting, 12(1), 1–16.

    Article  Google Scholar 

  • Christ, M. H., Emett, S. A., Summers, S. L., & Wood, D. A. (2021). Prepare for takeoff: Improving asset measurement and audit quality with drone-enabled inventory audit procedures. Review of Accounting Studies. https://doi.org/10.1007/s11142-020-09574-5.

    Article  Google Scholar 

  • Cleary, R., & Thibodeau, J. C. (2005). Applying digital analysis using Benford’s law to detect fraud: The dangers of type I errors. Auditing: A Journal of Practice & Theory, 24(1), 77–81.

    Article  Google Scholar 

  • Coussement, K., Lessmann, S., & Verstraeten, G. (2017). A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decision Support Systems, 95, 27–36. https://doi.org/10.1016/j.dss.2016.11.007.

    Article  Google Scholar 

  • Cuesta, C., Ruesta, M., Tuesta, D., & Urbiola, P. (2015). J. B. r. The digital transformation of the banking industry. 1–10.

  • Da Fonseca, L. M. C. M. (2015). ISO 14001: 2015: An improved tool for sustainability. Journal of Industrial Engineering and Management, 8(1), 37–50.

    Google Scholar 

  • Darwish, S. M. (2020). An intelligent credit card fraud detection approach based on semantic fusion of two classifiers. Soft Computing, 24(2), 1243–1253.

    Article  Google Scholar 

  • De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760–772. https://doi.org/10.1016/j.ejor.2018.02.009.

    Article  Google Scholar 

  • De Santis, F., & D’Onza, G. (2021). Big data and data analytics in auditing: In search of legitimacy. Meditari Accountancy Research, 29(5), 1088–1112.

    Article  Google Scholar 

  • Dimlioglu, T., Wang, J., Bisla, D., Choromanska, A., Odie, S., Bukhman, L., Olomola, A., & Wong, J. D. (2023). Automatic document classification via transformers for regulations compliance management in large utility companies. Neural Computing and Applications, 35(23), 17167–17185. https://doi.org/10.1007/s00521-023-08555-4.

    Article  Google Scholar 

  • Dresch, A., Lacerda, D. P., Antunes Jr, J. A. V., Dresch, A., Lacerda, D. P., & Antunes (2015). J. A. V. Design science research. Springer.

  • Dresch, A., Lacerda, D. P., & Miguel, P. A. C. J. R. b. d. g. d. n. (2015). A distinctive analysis of case study. Action Research and Design Science Research 17, 1116–1133.

  • Duh, R. R., Chen, K. T., Lin, R. C., & Kuo, L. C. (2014). Do internal controls improve operating efficiency of universities? Annals of Operations Research, 221(1), 173–195.

    Article  Google Scholar 

  • Earley, C. E. (2015). Data analytics in auditing: Opportunities and challenges. Business Horizons, 58(5), 493–500.

    Article  Google Scholar 

  • El Arass, M., Tikito, I., & Souissi, N. (2018). An audit framework for data lifecycles in a big data context 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT).

  • Enget, K., Saucedo, G. D., & Wright, N. S. (2017). Mystery, Inc.: A big data case. Journal of Accounting Education, 38, 9–22.

    Article  Google Scholar 

  • Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144.

    Article  Google Scholar 

  • Geerts, G. L. (2011). J. I. j. o. a. I. S. A design science research methodology and its application to accounting information systems research. 12(2), 142–151.

  • Gepp, A., Linnenluecke, M. K., O’Neill, T. J., & Smith, T. (2018). Big data techniques in auditing research and practice: Current trends and future opportunities. Journal of Accounting Literature, 40(1), 102–115. https://doi.org/10.1016/j.acclit.2017.05.003.

    Article  Google Scholar 

  • Ghosh, M., & Sanyal, G. (2018). Performance Assessment of Multiple Classifiers Based on Ensemble Feature Selection Scheme for Sentiment Analysis. Applied Computational Intelligence and Soft Computing, 2018, 8909357. https://doi.org/10.1155/2018/8909357.

  • Göller, S., Jung, J. C., & Lohrey, M. (2015). The complexity of decomposing modal and first-order theories. ACM Transactions on Computational Logic (TOCL), 16(1), 1–43.

    Article  Google Scholar 

  • Gray, G. L., & Debreceny, R. S. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357–380.

    Article  Google Scholar 

  • Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS Quarterly, 337–355.

  • Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian Journal of Information Systems, 19(2), 4.

    Google Scholar 

  • Hevner, A., & Chatterjee, S. (2010). Design science research in information systems. Design Research in Information Systems, 22, 9–22.

    Article  Google Scholar 

  • Holmström, J., Ketokivi, M., & Hameri, A. P. (2009). Bridging practice and theory: A design science approach. J D s, 40(1), 65–87.

    Google Scholar 

  • Iaasb, I. (2016). Handbook od international quality control, auditing, review, other assurance and related services pronouncements. New York.

  • Iivari, J., & Venable, J. R. (2009). Action research and design science research-Seemingly similar but decisively dissimilar CIS 2009 Proceedings., https://aisel.aisnet.org/ecis2009/73.

  • Islam, S., & Stafford, T. (2022). Factors associated with the adoption of data analytics by internal audit function. Managerial Auditing Journal, 37(2), 193–223. https://doi.org/10.1108/MAJ-04-2021-3090.

    Article  Google Scholar 

  • Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20.

    Article  Google Scholar 

  • Jacky, Y., & Sulaiman, N. A. (2022). The use of data analytics in external auditing: A content analysis approach. Asian Review of Accounting.

  • Ji-fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011–5026.

    Article  Google Scholar 

  • Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245.

    Article  Google Scholar 

  • Kokina, J., & Davenport, T. H. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122.

    Article  Google Scholar 

  • Krichene, A. (2017). Using a naive bayesian classifier methodology for loan risk assessment. Journal of Economics Finance and Administrative Science, 22(42), 3–24. https://doi.org/10.1108/JEFAS-02-2017-0039.

    Article  Google Scholar 

  • Lahann, J., Scheid, M., & Fettke, P. (2019). 15–17 July 2019). Utilizing Machine Learning Techniques to Reveal VAT Compliance Violations in Accounting Data. 2019 IEEE 21st Conference on Business Informatics (CBI).

  • Lai, P. C. (2017). The literature review of technology adoption models and theories for the novelty technology. JISTEM-Journal of Information Systems and Technology Management, 14, 21–38.

    Article  Google Scholar 

  • Liu, Q. (2014). The application of exploratory data analysis in auditing. Rutgers University-Graduate School-Newark].

  • Lois, P., Drogalas, G., Karagiorgos, A., & Tsikalakis, K. (2020). Internal audits in the digital era: Opportunities risks and challenges. EuroMed Journal of Business, 15(2), 205–217. https://doi.org/10.1108/EMJB-07-2019-0097.

    Article  Google Scholar 

  • Lombardi, R., & Secundo, G. (2020). The digital transformation of corporate reporting–a systematic literature review and avenues for future research. Meditari Accountancy Research.

  • Loo, K. S. (2000). The integration of quality and environmental auditing ISO/CD 2 19001 (formerly ISO 14010, 11, 12 and ISO 10011). Malaysian Palm Oil Board (MPOB).

  • Louwers, T. J., Henry, E., Reed, B. J., & Gordon, E. A. (2008). Deficiencies in auditing related-party transactions: Insights from AAERs. Current Issues in Auditing, 2(2), A10–A16.

    Article  Google Scholar 

  • Manita, R., Elommal, N., Baudier, P., & Hikkerova, L. (2020). The digital transformation of external audit and its impact on corporate governance. Technological Forecasting and Social Change, 150, 119751.

    Article  Google Scholar 

  • Marqués, A. I., García, V., & Sánchez, J. S. (2012). Two-level classifier ensembles for credit risk assessment. Expert Systems with Applications, 39(12), 10916–10922. https://doi.org/10.1016/j.eswa.2012.03.033.

    Article  Google Scholar 

  • Meredith, K., Blake, J., Baxter, P., & Kerr, D. (2020). Drivers of and barriers to decision support technology use by financial report auditors. Decision Support Systems, 139, 113402. https://doi.org/10.1016/j.dss.2020.113402.

    Article  Google Scholar 

  • Motubatse, K. N., van Staden, M., Steyn, B., & Erasmus, L. (2015). Audit tools and techniques: Crucial dimensions of Internal Audit Engagements in South Africa. Journal of Economics, 6(3), 269–279. https://doi.org/10.1080/09765239.2015.11917616.

    Article  Google Scholar 

  • Müller, N. M., Kowatsch, D., Debus, P., Mirdita, D., & Böttinger, K. (2019). 2019//). On GDPR Compliance of companies’ privacy policies. Text, Speech, and Dialogue.

  • Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569. https://doi.org/10.1016/j.dss.2010.08.006.

    Article  Google Scholar 

  • Ogundokun, R. O., Misra, S., Fatigun, O. J., & Adeniyi, J. K. (2022). 2022//). Naïve Bayes Based Classifier for Credit Card Fraud Discovery. Information Systems.

  • Oussii, A. A., & Boulila Taktak, N. (2018). The impact of internal audit function characteristics on internal control quality. Managerial Auditing Journal, 33(5), 450–469. https://doi.org/10.1108/MAJ-06-2017-1579.

    Article  Google Scholar 

  • Pan, Y., Zhang, L., Wu, X., & Skibniewski, M. J. (2020). Multi-classifier information fusion in risk analysis. Information Fusion, 60, 121–136. https://doi.org/10.1016/j.inffus.2020.02.003.

    Article  Google Scholar 

  • Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302.

    Article  Google Scholar 

  • Peffers, K., Tuunanen, T., Niehaves, B. J. E. J., & o. I., S. (2018). Design science research genres: Introduction to the special issue on exemplars and criteria for applicable design science research (Vol. 27, pp. 129–139). Taylor & Francis.

  • Pett, J. (2019). Being a smarter risk taker through digital transformation: 2019 risk in review study. PricewaterhouseCoopers (PwC).

  • Phan, M., De Caigny, A., & Coussement, K. (2023). A decision support framework to incorporate textual data for early student dropout prediction in higher education. Decision Support Systems, 168, 113940. https://doi.org/10.1016/j.dss.2023.113940.

    Article  Google Scholar 

  • Pizzi, S., Venturelli, A., Variale, M., & Macario, G. P. (2021). Assessing the impacts of digital transformation on internal auditing: A bibliometric analysis. Technology in Society, 67, 101738.

    Article  Google Scholar 

  • Popara, J., Savkovic, M., Lalic, D. C., & Lalic, B. (2023). 2023//). Application of Digital Tools, Data Analytics and Machine Learning in Internal Audit. Advances in Production Management systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures.

  • Ruhnke, K. (2023). Empirical research frameworks in a changing world: The case of audit data analytics. Journal of International Accounting Auditing and Taxation, 51, 100545. https://doi.org/10.1016/j.intaccaudtax.2023.100545.

    Article  Google Scholar 

  • Salijeni, G., Samsonova-Taddei, A., & Turley, S. (2019). Big Data and changes in audit technology: Contemplating a research agenda. Accounting and Business Research, 49(1), 95–119. https://doi.org/10.1080/00014788.2018.1459458.

    Article  Google Scholar 

  • Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x.

    Article  Google Scholar 

  • Shabani, N., Munir, A., & Mohanty, S. P. (2022). 2022//). A study of Big Data Analytics in Internal auditing. Intelligent Systems and Applications.

  • Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research, 15(3), 325–343.

    Article  Google Scholar 

  • Si, Y. (2022). Construction and Application of Enterprise Internal Audit Data Analysis Model Based on Decision Tree Algorithm. Discrete Dynamics in Nature and Society, 2022, 4892046. https://doi.org/10.1155/2022/4892046.

  • Siering, M. (2022). Explainability and fairness of RegTech for regulatory enforcement: Automated monitoring of consumer complaints. Decision Support Systems, 158, 113782. https://doi.org/10.1016/j.dss.2022.113782.

    Article  Google Scholar 

  • Soh, D. S. B., & Martinov-Bennie, N. (2011). The internal audit function. Managerial Auditing Journal, 26(7), 605–622. https://doi.org/10.1108/02686901111151332.

    Article  Google Scholar 

  • Sotelo Asef, J. G. (2018). ISO 19001: 2011 standard planning of the audit in a system of quality management on the basis of standard ISO 19011: 2011. RIDE Revista Iberoamericana Para La Investigación Y El Desarrollo Educativo, 8(16), 97–129.

    Article  Google Scholar 

  • Spira, L. F., & Page, M. (2003). Risk management: The reinvention of internal control and the changing role of internal audit. Accounting Auditing & Accountability Journal, 16(4), 640–661. https://doi.org/10.1108/09513570310492335.

    Article  Google Scholar 

  • Sun, Z., & Huo, Y. (2021). The spectrum of Big Data Analytics. Journal of Computer Information Systems, 61(2), 154–162. https://doi.org/10.1080/08874417.2019.1571456.

    Article  Google Scholar 

  • Sun, T., & Vasarhelyi, M. (2018). Predicting credit card delinquencies: An application of deep neural networks. Intelligent Systems in Accounting Finance and Management, 25. https://doi.org/10.1002/isaf.1437.

  • Tan, K. H. (2018). Managerial perspectives of big data analytics capability towards product innovation. Strategic Direction, 34(8), 33–35. https://doi.org/10.1108/SD-06-2018-0134.

    Article  Google Scholar 

  • Tang, J., & Karim, K. E. (2019b). Financial fraud detection and big data analytics– implications on auditors’ use of fraud brainstorming session. Managerial Auditing Journal, 34(3), 324–337. https://doi.org/10.1108/MAJ-01-2018-1767.

    Article  Google Scholar 

  • Tang, F., Norman, C. S., & Vendrzyk, V. P. (2017). Exploring perceptions of data analytics in the internal audit function. Behaviour & Information Technology, 36(11), 1125–1136. https://doi.org/10.1080/0144929X.2017.1355014.

    Article  Google Scholar 

  • Tarí, J. J., Molina-Azorín, J. F., & Heras, I. (2012). Benefits of the ISO 9001 and ISO 14001 standards: A literature review. Journal of Industrial Engineering and Management (JIEM), 5(2), 297–322.

    Google Scholar 

  • Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381–396.

    Article  Google Scholar 

  • Venable, J. R., Pries-Heje, J., & Baskerville, R. L. (2017). Choosing a design science research methodology.

  • vom Brocke, J., Hevner, A., & Maedche, A. (2020). Introduction to design science research. Design Science Research Cases, 1–13.

  • Whitehouse, H., & Lanman, J. A. (2014). The ties that bind us: Ritual, fusion, and identification. Current Anthropology, 55(6), 674–695.

    Article  Google Scholar 

  • Wieringa, R. (2010). Design science methodology: principles and practice. Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2.

  • Wieringa, R. J. (2014). Design science methodology for information systems and software engineering. Springer.

  • Yoon, K., Hoogduin, L., & Zhang, L. (2015). Big data as complementary audit evidence. Accounting Horizons, 29(2), 431–438.

    Article  Google Scholar 

  • Yoon, K., Liu, Y., Chiu, T., & Vasarhelyi, M. A. (2021). Design and evaluation of an advanced continuous data level auditing system: A three-layer structure. International Journal of Accounting Information Systems, 42, 100524.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamdjoug, J.R.K., Sando, H.D., Kala, J.R. et al. Data analytics-based auditing: a case study of fraud detection in the banking context. Ann Oper Res 340, 1161–1188 (2024). https://doi.org/10.1007/s10479-024-06129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-024-06129-8

Keywords

Navigation