Skip to main content
Log in

Nonradial plant capacity concepts: proposals and attainability

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This contribution observes that plant capacity notions based on traditional radial efficiency measures may leave substantial amounts of slacks or unmeasured inefficiency. These unmeasured inefficiencies can result in inaccurate assessments of production capabilities, potentially leading to suboptimal operational and strategic decisions. To remedy this problem, we define new nonradial output-oriented and input-oriented plant capacity concepts based on nonradial Färe-Lovell efficiency measures. By leveraging nonradial measures, our approach captures multidimensional inefficiencies, providing a more nuanced and accurate evaluation of production performance across various input and output dimensions. Furthermore, we also explore how the introduction of nonradial attainability levels can render the attainable output-oriented plant capacity concept more flexible. This flexibility allows for the incorporation of realistic operational constraints, ensuring that capacity assessments are both practical and adaptable to diverse production environments. An empirical illustration on a secondary data set illustrates the pertinent differences between radial and nonradial plant capacity notions. Our empirical analysis demonstrates that nonradial measures offer a more detailed understanding of capacity utilization. In particular, it shows that nonradial plant capacity concepts are especially important on a nonconvex technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used in this study are available in the Journal of Applied Econometrics Data Archive: http://qed.econ.queensu.ca/jae/1996-v11.6/ivaldi-ladoux-ossard-simioni/.

Notes

  1. Kerstens et al. (2020) propose a graph-based PCU measure based on some efficiency measures defined in relation to the graph of technology.

  2. There are a variety of other nonconvex technologies, see for example, Petersen (1990), Post (2001), and Podinovski and Kuosmanen (2011). This contribution focuses on the free disposable hull case for ease of exposition.

  3. Note that \(PCU_o(\varvec{x},\varvec{x^f},\varvec{y})=1\) does not imply that \((\varvec{x},\varvec{y})\) is efficient because the efficiency status has no impact on plant capacity measurement (Cesaroni et al. (2017)).

  4. The partial O-O PCU \(PPCU_{o(r)}(\varvec{x^f},y_r,\varvec{y_{-r}})\) from Definition 3.3 is defined by nonradial efficiency measures: we discuss it later in more detail.

  5. The observations and projections in Fig. 2 differ from those in Fig. 1 although we use the same letters.

  6. The optimal input capacity should be located on segment ab with Fig. 1, and the optimal output capacity should be located on segment cd with Fig. 2.

  7. \(1\le DF_o(\varvec{x}\varvec{y})\le DF_{o(r)}(\varvec{x},y_r,\varvec{y_{-r}})\le NDF_o(\varvec{x},\varvec{y}),r=1,...,s\) can be proven analogous to the proof of Proposition 3.5. The corresponding proof is not provided to save space.

  8. \(NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\varvec{y})\le DF_i^{SR}(\varvec{x^f},\varvec{x^v},\varvec{y})\le 1\) can be proven analogous to Proposition 3.8. To save space, its proof is not provided.

  9. In the current empirical analysis, the attainable O-O PCU measure introduced in Sect. 3.4 is not implemented due to data limitations and the focused scope of the study. Our primary objective is to compare radial and nonradial plant capacity measures under convex and nonconvex technologies. However, recognizing its potential value, we plan to incorporate this procedure in future research utilizing more detailed data sets. This will allow for a comprehensive assessment of plant capacity utilization that fully accounts for operational constraints.

  10. While the weighted nonradial plant capacity concepts are more general, in practice it is difficult to come up with a reasonable weight vector.

  11. Matlab code for the Li-test based on Li et al. (2009) is available at: https://github.com/kepiej/DEAUtils.

References

  • Cesaroni, G., Kerstens, K., & Van de Woestyne, I. (2017). A new onput-oriented plant capacity notion: Definition and empirical comparison. Pacific Economic Review, 22(4), 720–739.

    Article  Google Scholar 

  • Cesaroni, G., Kerstens, K., & Van de Woestyne, I. (2019). Short-and long-run plant capacity notions: Definitions and comparison. European Journal of Operational Research, 275(1), 387–397.

    Article  Google Scholar 

  • Chen, X., & Kerstens, K. (2023). Evaluating horizontal mergers in Swedish district courts using plant capacity concepts: With a focus on nonconvexity. RAIRO - Operations Research, 57(1), 219–236.

    Article  Google Scholar 

  • Cooper, W. W., Park, K. S., & Pastor, J. T. (1999). RAM: A range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. Journal of Productivity Analysis, 11(1), 5–42.

    Article  Google Scholar 

  • Cui, Y., Ren, X.-T., He, X.-J., & Yang, G.-L. (2023). Is human and financial investment in Chinese universities effective? Socio-Economic Planning Sciences, 88, 101541.

    Article  Google Scholar 

  • De Borger, B., Ferrier, G., & Kerstens, K. (1998). The choice of a technical efficiency measure on the Free Disposal Hull reference technology: A comparison using US banking data. European Journal of Operational Research, 105(3), 427–446.

    Article  Google Scholar 

  • Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor efficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The Performance of Public Enterprises: Concepts and Measurements (pp. 243–268). Amsterdam: North Holland.

    Google Scholar 

  • Fare, R., Grosskopf, S., & Kokkelenberg, E. C. (1989). Measuring plant capacity, utilization and technical change: A nonparametric approach. International Economic Review, pp. 655–666.

  • Färe, R., Grosskopf, S., & Lovell, C. K. (1994). Production Frontiers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Färe, R., Grosskopf, S., & Valdmanis, V. (1989). Capacity, competiton and efficiency in hospitals: A nonparametric approach. Journal of Productivity Analysis, 1(2), 123–138.

    Article  Google Scholar 

  • Färe, R., & Lovell, C. K. (1978). Measuring the technical efficiency of production. Journal of Economic Theory, 19(1), 150–162.

    Article  Google Scholar 

  • Ferrier, G., Kerstens, K., & Vanden Eeckaut, P. (1994). Radial and nonradial technical efficiency measures on a DEA reference technology: A comparison using US banking data. Recherches Économiques de Louvain, 60(4), 449–479.

    Article  Google Scholar 

  • Fukuyama, H., Liu, H.-H., Song, Y.-Y., & Yang, G.-L. (2021). Measuring the capacity utilization of the 48 largest iron and steel enterprises in China. European Journal of Operational Research, 288(2), 648–665.

    Article  Google Scholar 

  • Hackman, S. (2008). Production Economics: Integrating the Microeconomic and Engineering Perspectives. Berlin: Springer.

    Google Scholar 

  • Ivaldi, M., Ladoux, N., Ossard, H., & Simioni, M. (1996). Comparing Fourier and translog specifications of multiproduct technology: Evidence from an incomplete panel of French farmers. Journal of Applied Econometrics, 11(6), 649–667.

    Article  Google Scholar 

  • Johansen, L. (1968). “Production functions and the concept of capacity,” Discussion Paper [reprinted in F. R. Førsund (ed.) (1987) Collected Works of Leif Johansen, Volume 1, Amsterdam, North Holland, 359–382], CERUNA, Namur.

  • Karagiannis, R. (2015). A system-of-equations two-stage DEA approach for explaining capacity utilization and technical efficiency. Annals of Operations Research, 227(1), 25–43.

    Article  Google Scholar 

  • Kerstens, K., & Sadeghi, J. (2024). Plant capacity notions: Review, new definitions, and existence results at firm and industry levels. International Journal of Production Research, 62(3), 1017–1040.

    Article  Google Scholar 

  • Kerstens, K., Sadeghi, J., & Van de Woestyne, I. (2019). Convex and nonconvex input-oriented technical and economic capacity measures: An empirical comparison. European Journal of Operational Research, 276(2), 699–709.

    Article  Google Scholar 

  • Kerstens, K., Sadeghi, J., & Van de Woestyne, I. (2019). Plant capacity and attainability: Exploration and remedies. Operations Research, 67(4), 1135–1149.

    Google Scholar 

  • Kerstens, K., Sadeghi, J., & Van de Woestyne, I. (2020). Plant capacity notions in a non-parametric framework: A brief review and new graph or non-oriented plant capacities. Annals of Operations Research, 288(2), 837–860.

    Article  Google Scholar 

  • Kerstens, K., & Shen, Z. (2021). Using COVID-19 mortality to select among hospital plant capacity models: An exploratory empirical application to Hubei province. Technological Forecasting and Social Change, 166, 1–10.

    Article  Google Scholar 

  • Kerstens, K., & Van de Woestyne, I. (2021). Cost functions are nonconvex in the outputs when the technology is nonconvex: Convexification is not harmless. Annals of Operations Research, 305(1), 81–106.

    Article  Google Scholar 

  • Li, Q. (1996). Nonparametric testing of closeness between two unknown distribution functions. Econometric Reviews, 15(3), 261–274.

    Article  Google Scholar 

  • Li, Q., Maasoumi, E., & Racine, J. S. (2009). A nonparametric test for equality of distributions with mixed categorical and continuous data. Journal of Econometrics, 148(2), 186–200.

    Article  Google Scholar 

  • Petersen, N. C. (1990). Data envelopment analysis on a relaxed set of assumptions. Management Science, 36(3), 305–314.

    Article  Google Scholar 

  • Podinovski, V. V., & Kuosmanen, T. (2011). Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions. European Journal of Operational Research, 211(3), 577–585.

    Article  Google Scholar 

  • Post, T. (2001). Estimating non-convex production sets-imposing convex input sets and output sets in Data Envelopment Analysis. European Journal of Operational Research, 131(1), 132–142.

    Article  Google Scholar 

  • Ruggiero, J., & Bretschneider, S. (1998). The weighted Russell measure of technical efficiency. European Journal of Operational Research, 108(2), 438–451.

    Article  Google Scholar 

  • Russell, R., & Schworm, W. (2009). Axiomatic foundations of efficiency measurement on data-generated technologies. Journal of Productivity Analysis, 31(2), 77–86.

    Article  Google Scholar 

  • Russell, R., & Schworm, W. (2011). Properties of inefficiency indexes on \(\langle \)Input, Output\(\rangle \) space. Journal of Productivity Analysis, 36(2), 143–156.

    Article  Google Scholar 

  • Russell, R., & Schworm, W. (2018). Technological inefficiency indexes: A binary taxonomy and a generic theorem. Journal of Productivity Analysis, 49(1), 17–23.

    Article  Google Scholar 

  • Sahoo, B. K., & Tone, K. (2009). Decomposing capacity utilization in Data Envelopment Analysis: An application to banks in India. European Journal of Operational Research, 195(2), 575–594.

    Article  Google Scholar 

  • Segerson, K., & Squires, D. (1990). On the measurement of economic capacity utilization for multi-product industries. Journal of Econometrics, 44(3), 347–361.

    Article  Google Scholar 

  • Shen, Z., Balezentis, T., & Streimikis, J. (2022). Capacity utilization and energy-related GHG emission in the European agriculture: A Data Envelopment Analysis approach. Journal of Environmental Management, 318.

  • Song, M., Zhou, W., Upadhyay, A., & Shen, Z. (2023). Evaluating hospital performance with plant capacity utilization and machine learning. Journal of Business Research, 159.

  • Tingley, D., Pascoe, S., & Mardle, S. (2003). Estimating capacity utilisation in multi-purpose, multi-metier fisheries. Fisheries Research, 63(1), 121–134.

    Article  Google Scholar 

  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498–509.

    Article  Google Scholar 

  • Vestergaard, N., Squires, D., & Kirkley, J. (2003). Measuring capacity and capacity utilization in fisheries: The case of the Danish gill-net fleet. Fisheries Research, 60(2–3), 357–368.

    Article  Google Scholar 

  • Walden, J. B., & Tomberlin, D. (2010). Estimating fishing vessel capacity: A comparison of nonparametric frontier approaches. Marine Resource Economics, 25(1), 23–36.

    Article  Google Scholar 

  • Yang, G.-L., & Fukuyama, H. (2018). Measuring the Chinese regional production potential using a generalized capacity utilization indicator. Omega, 76, 112–127.

    Article  Google Scholar 

  • Zhu, J. (1996). Data envelopment analysis with preference structure. Journal of the Operational Research Society, 47(1), 136–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Tao.

Ethics declarations

Conflict of interest Statement

The authors report there are no Conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank two referees of the journal for their most helpful comments. The usual disclaimer applies. The work of Xiangyang Tao is supported by National Natural Science Foundation of China (No. 72401044), Postdoctoral Fellowship Program of CPSF (No. GZC20233317), and China Postdoctoral Science Foundation (No. 2023M740393).

Appendices

Appendices: Supplementary material

Proofs

Proposition A.1

The maximal output capacity \(\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\) has the following properties:

  1. (i)

    It belongs to the isoquant of \(P^f(\varvec{x^f})\), i.e., \(\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in \text {Isoq }P^f(\varvec{x^f}).\)

  2. (ii)

    It belongs to the isoquant of \(P(\varvec{x^f},+\infty )\), i.e., \({\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in \text {Isoq }P(\varvec{x^f},+\infty )}\).

Proof

First, suppose \(\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\notin \text {Isoq }P^f(\varvec{x^f}) \), then there exists \(\theta \in (1,\infty )\), such that \(\theta \varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in P^f(\varvec{x^f}) \). As \(\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}=DF_o^f(\varvec{x^f},\varvec{y})\varvec{y}\) (see Definition 3.5), we obtain \(\theta DF_o^f(\varvec{x^f},\varvec{y})\varvec{y}\in P^f(\varvec{x^f})\). Let \(\theta ^*=\theta DF_o^f(\varvec{x^f},\varvec{y})>DF_o^f(\varvec{x^f},\varvec{y})\), \(\theta ^*y\in P^f(\varvec{x^f})\) holds. As a consequence, there exists a feasible solution \(\theta ^*(>DF_o^f(\varvec{x^f},\varvec{y}))\) to Program (8). Therefore, \(DF_o^f(\varvec{x^f},\varvec{y})\) is not the optimal solution of Program (8), which contradicts to the the definition of \(DF_o^f(\varvec{x^f},\varvec{y})\) as shown in (8). Hence, \(\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in \text {Isoq }P^f(\varvec{x^f})\).

Second, to prove \(\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in \text {Isoq }P(\varvec{x^f},+\infty )\), we only need to prove \(\text {Isoq }P^f(\varvec{x^f})=\text {Isoq }P(\varvec{x^f},+\infty )\) as \({\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in \text {Isoq }P^f(\varvec{x^f})}\). Recall that \(P(\varvec{x^f},+\infty )=\{\varvec{y}\mid (\varvec{x^f},+\infty ,\varvec{y})\in T\}\) and \(T^f=\{(\varvec{x^f},\varvec{y})\mid (\varvec{x^f},\varvec{x^v},\varvec{y}) \in T\}\), \(P(\varvec{x^f},+\infty )\) can be reformulated as \(P(\varvec{x^f},+\infty )=\{\varvec{y}\mid (\varvec{x^f},\varvec{y})\in T^f\}\) because of free disposability in variable inputs (i.e., \(\varvec{x^v}<+\infty \)). Combining \(P^f(\varvec{x^f})=\{\varvec{y}\mid (\varvec{x^f},\varvec{y})\in T^f\}\), we have \(P(\varvec{x^f},+\infty )=P^f(\varvec{x^f})\). Consequently, \(\text {Isoq }P(\varvec{x^f},+\infty )=\text {Isoq }P^f(\varvec{x^f})\). Thus, \({\varvec{y}_{o,(\varvec{x^f}, \varvec{y})}\in \text {Isoq }P(\varvec{x^f},+\infty )}\). \(\square \)

Proposition A.2

The minimal input capacity \(\varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )}\) with the fixed inputs \(\varvec{x^f}\) belongs to the isoquant of \(L(\epsilon )\), i.e., \((\varvec{x^f},\varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\in \text {Isoq }L(\epsilon )\).

Proof

Suppose \((\varvec{x^f},\varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\notin \text {Isoq }L(\epsilon )\), then there exists \(\beta \in [0,1)\) such that \(\beta (\varvec{x^f},\varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\in L(\epsilon ) \). By the assumption of free disposability in (variable) inputs, we have \((\varvec{x^f},\beta \varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )}\in L(\epsilon )\) because of \(\varvec{x^f}>\beta \varvec{x^f}\). As \(\varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )}=DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\varvec{x^v}\) (see Definition 3.6), we obtain \((\varvec{x^f},\beta DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\varvec{x^v}\in L(\epsilon ))\). Let \(\beta ^*=\beta DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )<DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\),\((\varvec{x^f},\beta ^*\varvec{x^v})\in L(\epsilon )\) holds. Consequently, there exists a feasible solution \(\beta ^*<DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) to Program (7). Hence, \(DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) is not the optimal solution of Program (7) when \(\varvec{y}=\epsilon \), which contradicts to the definition of \(DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) as shown in (7). Therefore, \((\varvec{x^f},\varvec{x^v}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\in \text {Isoq }L(\epsilon )\). \(\square \)

Proposition A.3

The optimal output capacity \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\) has the following properties:

  1. (i)

    It pertains to the efficient subset of \(P^f(\varvec{x^f})\), i.e., \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\in \text {Eff } P^f(\varvec{x^f})\).

  2. (ii)

    It pertains to the efficient subset of \(P(\varvec{x^f},+\infty )\), i.e., \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\in \text {Eff } P(\varvec{x^f},+\infty )\).

Proof

First, suppose \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\notin \text {Eff } P^f(\varvec{x^f})\), then there exists \(\varvec{y'}\ge \varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})},\varvec{y'}\ne \varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\), such that \(\varvec{y'}\in P^f(\varvec{x^f})\). Since \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}=\theta ^*\odot \varvec{y}\) (see Definition 3.9), we obtain \(\theta ^*\odot \varvec{y}+\varvec{z}\in P^f(\varvec{x^f})\) where \(\varvec{z}\in {\mathbb {R}}_+^r=\varvec{y'}-\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\). Suppose the tth element of vector \(\varvec{z}\) denoted by \(z_t,t=1,...,s\) is strictly greater than zero while other elements are equal to zero, then we get \((\theta _1^*y_1,...,\theta _t^*y_t+z_t,...,\theta _s^*y_s)\in P^f(\varvec{x^f})\). Let \(\theta '_t=\frac{z_t}{y_t}>0\) and \(\theta _t^{**}=\theta '_t+\theta _t^*>\theta _t^*\), we have \((\theta _1^*y_1,...,\theta _t^{**}y_t,...,\theta _s^*y_s)\in P^f(\varvec{x^f})\). Thus, \((\theta _1^*,...,\theta _t^{**},...,\theta _s^*)\) is a feasible solution to Program (19), the corresponding value of objective function is \(\sum \limits _{r=1,r\ne t}^s\mu _r\theta _r^*+\mu _t\theta _t^{**}\). Since \(\sum \limits _{r=1,r\ne t}^s\mu _r\theta _r^*+\mu _t\theta _t^{**}> \sum \limits _{r=1,r\ne t}^s\mu _r\theta _r^*+\mu _t\theta _t^{**}=\sum \limits _{r=1}^s\mu _r\theta _r^*\), \((\theta _1^*,...,\theta _t^{*},...,\theta _s^*)\) is not the optimal solution of Program (19), which contracts to the definition of \(WNDF_o^f(\varvec{x^f},\varvec{y})\) as shown in (19). Hence, \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\in \text {Eff } P^f(\varvec{x^f})\).

Second, as \(P(\varvec{x^f},+\infty )=P^f(\varvec{x^f})\) (see the proof of Proposition 3.1), it is obvious that \(\text {Eff }P(\varvec{x^f},+\infty )\) = Eff \(P^f(\varvec{x^f})\). As a consequence, \(\varvec{y}^{WN}_{o,(\varvec{x^f},\varvec{y})}\in \text {Eff } P(\varvec{x^f},+\infty )\). \(\square \)

Proposition A.4

The generalized framework for the biased O-O PCU measure is defined as:

$$\begin{aligned} GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=\max \{\sum _{r=1}^s\mu _r\theta _r\mid \theta \odot \varvec{y}\in P^f(\varvec{x^f}),\mu \in \Lambda ,\theta \in \Gamma \}. \end{aligned}$$
(A.1)

whereby:

  1. (i)

    \(\Lambda =\Lambda ^1=\{\mu \mid \mu _1=\mu _2=\cdot \cdot \cdot =\mu _s=\frac{1}{s}\}\), \(\Gamma =\Gamma ^1=\{\theta \mid \theta _1=\theta _2=\cdot \cdot \cdot =\theta _s\ge 1\}\Rightarrow GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )\)=\(DF_o^f(\varvec{x^f},\varvec{y})\);

  2. (ii)

    \(\Lambda =\Lambda ^2=\{\mu \mid \mu _r=1,\mu _{-r}=0\}\), \(\Gamma =\Gamma ^2=\{\theta \mid \theta _r\ge 1,\theta _{-r}=1\}\Rightarrow GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\);

  3. (iii)

    \(\Lambda =\Lambda ^3=\{\mu \mid \sum \limits _{r=1}^s\mu _r=1, \mu _r>0,r=1,...,s\}\), \(\Gamma =\Gamma ^3=\{\theta \mid \theta \ge 1\}\Rightarrow GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=WNDF_o^f(\varvec{x^f},\varvec{y})\);

  4. (iv)

    \(\Lambda =\Lambda ^1=\{\mu \mid \mu _1=\mu _2=\cdot \cdot \cdot =\mu _s=\frac{1}{s}\}\), \(\Gamma =\Gamma ^3=\{\theta \mid \theta \ge 1\}\Rightarrow GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=NDF_o^f(\varvec{x^f},\varvec{y})\);

Proof

First, when \(\mu _1=\mu _2=\cdot \cdot \cdot =\mu _s=\frac{1}{s}\), let \(\bar{\theta }=\theta _1=\theta _2=\cdot \cdot \cdot =\theta _s\ge 1\), we have \(GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=\max \{\bar{\theta }\mid \bar{\theta }\varvec{y}\in P^f(\varvec{x^f}),\bar{\theta }\in [1,+\infty )\}\)=\(DF_o^f(\varvec{x^f},y)\).

Second, when \(\mu _r=1,\mu _{-r}=0\), and \(\theta _r\ge 1,\theta _{-r}=1\), we have \(GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=\max \{\theta _r\mid (\theta _r y_r,\varvec{y_{-r}})\in P^f(\varvec{x^f}),\theta _r\in [1,+\infty ) \}\)=\(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\).

Third, when \(\sum \limits _{r=1}^s\mu _r=1, \mu _r>0,r=1,...,s\) and \(\theta \ge 1\), \(GDF_o^f(\varvec{x^f}, \varvec{y}\mid \Lambda ,\Gamma )=WNDF_o^f(\varvec{x^f},\varvec{y})\) by (19).

Fourth, when \(\mu _1=\mu _2=\cdot \cdot \cdot =\mu _s=\frac{1}{s}\), \(GDF_o^f(\varvec{x^f},\varvec{y}\mid \Lambda ,\Gamma )=NDF_o^f(\varvec{x^f},\varvec{y})\) by (16). \(\square \)

Proposition A.5

The following linkages can be established among biased radial O-O PCU measure, partial O-O PCU measure, and Färe-Lovell O-O PCU measure (\(s\ge 1\)):

$$\begin{aligned} 1\le DF_o^f(\varvec{x^f},\varvec{y})\le DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\le NDF_o^f(\varvec{x^f},\varvec{y}),r=1,...,s. \end{aligned}$$
(A.2)

In particular,

(i) a sufficient condition for \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})< NDF_o^f(\varvec{x^f},\varvec{y}),r=1,...,s\) is that \(\varvec{y}\notin \text {Eff } P^f(\varvec{x^f})\), i.e., \(NDF_o^f(\varvec{x^f},\varvec{y})>1\);

(ii) a sufficient condition for \(DF_o^f(\varvec{x^f},\varvec{y})= NDF_o^f(\varvec{x^f},\varvec{y})=DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\) is that output is a singleton, i.e., \(s=1\).

Proof

First, \( DF_o^f(\varvec{x^f},\varvec{y})\ge 1\) is satisfied by definition (see measure (8)).

Second, let \(\theta ^*\ge 1\) be the optimal solution to program \(\max \{\theta \mid \theta \varvec{y}\in P^f(\varvec{x^f}),\theta \in [1,+\infty )\}\), i.e., \(\theta ^*=DF_o^f(\varvec{x^f},\varvec{y})\), then we have \((\theta ^*y_r,\theta ^*\varvec{y_{-r}})\in P^f(\varvec{x^f})\). By the assumption of free disposability in outputs, we obtain \((\theta ^*y_r,\varvec{y_{-r}})\in P^f(\varvec{x^f})\) due to \(\varvec{y_{-r}}\le \theta ^*\varvec{y_{-r}}\). Thus, \(\theta ^*\) is a feasible solution to program \(\max \{\theta _r\mid (\theta _r y_r,\varvec{y_{-r}})\in P^f(\varvec{x^f}),\theta _r\in [1,+\infty )\},r=1,...,s\), thereby \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\ge \theta ^*\) (see Definition 3.2), i.e., \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\ge DF_o^f(\varvec{x^f},\varvec{y})\).

Third, to prove \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\le NDF_o^f(\varvec{x^f},\varvec{y}),r=1,...,s\), we should consider the following two cases: (i) \(NDF_o^f(\varvec{x^f},\varvec{y})=1\) and (ii) \(NDF_o^f(\varvec{x^f},\varvec{y})>1\). In the former case, we have \(\theta _1^*=...=\theta _s^*=1\) where \(\theta ^*\) is the optimal solution of Program (16) whose component is \(\theta _r^*,r=1,...,s\). Clearly, \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})=1\) must be satisfied according Definition 3.2, which can be proven by contradiction as follows. Suppose \(\theta _r^*=1\) is not the optimal solution of Program (11), then there exists \(\theta _r^{**}>1\) such that \((\theta _r^{**}y_r,\varvec{y_{-r}})\in P^f(\varvec{x^f})\). Thus, \((1_1,...,\theta _r^{**},...,1_s)\) is a feasible solution to Program (16). The corresponding value of objective function is \(\frac{s-1+\theta _r^{**}}{s}>1\) because of \(\theta _r^{**}>1,\) thereby \(\theta _1^*=...=\theta _s^*=1\) is not the optimal of Program (16) and \(NDF_o^f(\varvec{x^f},\varvec{y})\ne 1\), which contradicts to \(NDF_o^f(\varvec{x^f},\varvec{y})=1\). Hence, we obtain \(NDF_o^f(\varvec{x^f},\varvec{y})=DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}}),r=1,...,s\). In the latter case, we consider the following two subcases (ii-1) \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})=1\) and (ii-2) \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})>1\). In sub-case (ii-1), \(NDF_o^f(\varvec{x^f},\varvec{y})>DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\) holds clearly. In sub-case (ii-2), suppose \(\theta _r'\) is the optimal solution of Program (11), i.e., \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})=\theta _r'\). Then \((1_1,...,\theta _r',...,1_s)\) is a feasible solution to Program (16), from which we obtain \(\frac{s-1+\theta _r'}{s}\le NDF_o^f(\varvec{x^f},\varvec{y})\). Reformulate the formula above, we get \(\frac{NDF_o^f(\varvec{x^f},\varvec{y})-1}{\theta _r'-1}\ge \frac{1}{s}\). Therefore, \(\frac{NDF_o^f(\varvec{x^f},\varvec{y})-1}{DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})-1}>0\), i.e., \(NDF_o^f(\varvec{x^f},\varvec{y})>DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\). Wrapping up, \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\le NDF_o^f(\varvec{x^f},\varvec{y}),r=1,...,s\).

Fourth, when \(NDF_o^f(\varvec{x^f},\varvec{y})>1\), \(DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})< NDF_o^f(\varvec{x^f},\varvec{y}),r=1,...,s\) have been proven above (see subcases (ii-1) and (ii-2)).

Finally, when the output is a singleton, \(DF_o^f(\varvec{x^f},\varvec{y})= NDF_o^f(\varvec{x^f},\varvec{y})=DF_{o(r)}^f(\varvec{x^f},y_r,\varvec{y_{-r}})\) always holds by definition. \(\square \)

Proposition A.6

The optimal input capacity \(\varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )}\) with the fixed inputs \(\varvec{x^f}\) belongs to the isoquant of \(L(\epsilon )\), i.e., \((\varvec{x^f},\varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\in \text {Isoq } L(\epsilon )\).

Proof

Suppose \((\varvec{x^f},\varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\notin \text {Isoq } L(\epsilon )\), then there exists \(\beta \in [0,1)\) such that \(\beta (\varvec{x^f},\varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\in L(\epsilon )\). By the assumption of free disposability in (variable) inputs, we can induce that \((\varvec{x^f},\beta \varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )}\in L(\epsilon )\) due to \(\varvec{x^f}>\beta \varvec{x^f}\). Since \(\varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )}=\beta ^*\odot \varvec{x^v}\) (see Definition 3.12), we obtain \((\varvec{x^f},\beta \cdot \beta ^*\odot \varvec{x^v})\in L(\epsilon )\). Let \(\beta ^{**}=\beta \cdot \beta ^*<\beta ^*\), then \((\varvec{x^f},\beta ^{**}\odot \varvec{x^v})\in L(\epsilon )\). As a consequence, there exists a feasible solution \(\beta ^{**}<\beta ^*\) to Program (29) whose corresponding value of objective function is \(\sum \limits _{i=1}^{m^v}\eta _i\beta ^{**}\). \(\beta ^*\) is not the optimal solution of Program (29) because of \(\sum \limits _{i=1}^{m^v}\eta _i\beta ^{**}<\sum \limits _{i=1}^{m^v}\eta _i\beta ^{*}\), contradicting to the definition of \(WNDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) as shown in (29). Therefore, \((\varvec{x^f},\varvec{x}^{v,WN}_{i,(\varvec{x^f},\varvec{x^v},\epsilon )})\in \text {Isoq } L(\epsilon )\). \(\square \)

Proposition A.7

The generalized framework for the biased I-O PCU measure is defined as:

$$\begin{aligned} GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi ) =\min \{\sum \limits _{i=1}^{m^v}\eta _i\beta _i\mid (\varvec{x^f},\beta \odot \varvec{x^v})\in L(\epsilon ),\eta \in \Upsilon ,\beta \in \Phi \}, \end{aligned}$$
(A.3)

where

  1. (i)

    \(\Upsilon =\Upsilon ^1=\{\eta \mid \eta _1=\eta _2 =\cdot \cdot \cdot =\eta _{m^v}=\frac{1}{m^v}\},\Phi =\Phi ^1=\{\beta \mid \ 0\le \beta _1=\beta _2 =\cdot \cdot \cdot =\beta _{m^v}\le 1\}\Rightarrow \) \(GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi ) =DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\);

  2. (ii)

    \(\Upsilon =\Upsilon ^2=\{\eta \mid \sum \limits _{i=1}^{m^v}\eta _i=1,\eta _i>0,i=1,...,m^v\}, \Phi =\Phi ^2=\{\beta \mid 0\le \beta \le 1\}\Rightarrow GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi ) =WNDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\).

  3. (iii)

    \(\Upsilon =\Upsilon ^1=\{\eta \mid \eta _1=\eta _2=\cdot \cdot \cdot =\eta _{m^v}=\frac{1}{m^v}\},\Phi =\Phi ^2=\{\beta \mid 0\le \beta \le 1\}\Rightarrow GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi ) =NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\).

Proof

First, when \(\eta _1=\eta _2=\cdot \cdot \cdot =\eta _{m^v}=\frac{1}{m^v}\), let \(\bar{\beta }=\beta _1=\beta _2=\cdot \cdot \cdot =\beta _{m^v}\), we have \(GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi )=\min \{\bar{\beta }\mid (\varvec{x^f},\bar{\beta }\varvec{x^v})\in L(\epsilon ),\bar{\beta }\in [0,1]\}=DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\).

Second, when \(\sum \limits _{i=1}^{m^v}\eta _i=1,\eta _i>0,i=1,...,m^v\) and \(0\le \beta \le 1\), \(GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi )=WNDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) holds by (29).

Third, when \(\eta _1=\eta _2=\cdot \cdot \cdot =\eta _{m^v}=\frac{1}{m^v}\), \(GDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon \mid \Upsilon ,\Phi )=NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) holds by (25).

Proposition A.8

The following linkage can be established between the biased (sub-vector) radial I-O PCU measure and the biased Färe-Lovell I-O PCU measure (\(m^v\ge 1\)):

$$\begin{aligned} NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\le DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\le 1. \end{aligned}$$
(A.4)

In particular, a sufficient condition for \(NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )=DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) is that the variable input is a singleton, i.e., \(m^v=1\).

Proof

First, \(DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\le 1\) is satisfied by setting \(\varvec{y}=\epsilon \) in measure (7).

Second, let \(\beta ^*\in [0,1]\) be the optimal solution of program \(\min \{\beta \mid (\varvec{x^f},\beta \varvec{x^v})\in L(\epsilon ), \beta \in [0,1]\},\) i.e., \(\beta ^*=DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\), then we get \(\beta _1=\beta _2=\cdot \cdot \cdot =\beta _{m^v}=\beta ^*\) is a feasible solution to program \(\min \{\frac{1}{m^v}\sum \limits _{i=1}^{m^v}\beta _i\mid (\varvec{x^f},\beta \odot \varvec{x^v})\in L(\epsilon ),\beta _i\in [0,1]\}\). The corresponding value of objective function is \(\beta ^*\). Hence, \(\beta ^*\ge NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\) (see measure (25)), i.e., \(NDF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\le DF_i^{SR}(\varvec{x^f},\varvec{x^v},\epsilon )\).

Proposition A.9

There exists a set \(\Delta \), such that for any \(\hat{\xi }\in \Delta \), we have:

  1. (i)

    \(\forall \xi \ge \hat{\xi },\) we have \(ANPCU_o(\varvec{x},\varvec{x^f},\varvec{y},\xi )=NPCU_o(\varvec{x},\varvec{x^f},\varvec{y})\).

  2. (ii)

    \(\forall \xi \le \hat{\xi }\) and \(\xi \ne \hat{\xi },\) we have \(ANPCU_o(\varvec{x},\varvec{x^f},\varvec{y},\xi )>NPCU_o(\varvec{x},\varvec{x^f},\varvec{y})\).

Proof

\(ANDF_o^f(\varvec{x^f},\varvec{y},\hat{\xi })\) is non-decreasing with \(\hat{\xi }\) because the feasible region of Model (B.9) is enlarged as \(\hat{\xi }\) increases. Combined with \(ANDF_o^f(\varvec{x^f},\varvec{y},\hat{\xi })\le NDF_o^f(\varvec{x^f},\varvec{y})\), we clearly obtain that there exists a set \(\Delta \), such that for any \(\hat{\xi }\in \Delta \), we have (i) \(\forall \xi \ge \hat{\xi },\) \(ANDF_o(\varvec{x^f},\varvec{y},\xi )=NDF_o(\varvec{x^f},\varvec{y})\); and (ii) \(\forall \xi \le \hat{\xi }\) and \(\xi \ne \hat{\xi },\) \(ANDF_o(\varvec{x^f},\varvec{y},\xi )<NDF_o(\varvec{x^f},\varvec{y})\). By the definitions of \(NPCU_o(\varvec{x},\varvec{x^f},\varvec{y})\) and \(ANPCU_o(\varvec{x},\varvec{x^f},\varvec{y},\bar{\xi })\) (see Definitions 3.7 and 3.15), we can induce that for any \(\hat{\xi }\in \Delta \), we have (i)\(\forall \xi \ge \hat{\xi },\) \(ANPCU_o(\varvec{x},\varvec{x^f},\varvec{y},\xi )=NPCU_o(\varvec{x},\varvec{x^f},\varvec{y})\); and (ii) \(\forall \xi \le \hat{\xi }\) and \(\xi \ne \hat{\xi },\) \(ANPCU_o(\varvec{x},\varvec{x^f},\varvec{y},\xi )>NPCU_o(\varvec{x},\varvec{x^f},\varvec{y})\).

Computing nonradial plant capacity notions

This appendix presents the estimation of various capacity concepts’ components within a non-parametric frontier framework, assuming VRS. To formulate the models, we will first review the notations introduced in this contribution. The vector of m inputs, denoted as \(\varvec{x} \in {\mathbb {R}}^m_+\), is capable of generating a vector of s outputs, denoted as \(\varvec{y} \in {\mathbb {R}}_+^s\). The input vector \(\varvec{x}\) can be divided into two parts: a fixed component (\(\varvec{x^f}\)) and a variable component (\(\varvec{x^v}\)), represented as \(\varvec{x} = (\varvec{x^f}, \varvec{x^v})\). For each observed production unit k under evaluation, and the corresponding output vector (\(\varvec{y_k}\)) are known. The fixed and variable input components for the unit are denoted as \(\varvec{x^f_{k}}\) and \(\varvec{x^v_{k}}\), respectively. Lastly, since non-parametric frontier technologies are based on activity analysis, we require a vector of activity variables, \(\lambda = (\lambda _1, \dots , \lambda _n)\), which indicates the intensity levels at which each of the n observed activities is conducted.

Note that to save space, we only present linear programs of efficiency and plant capacity measures under C. The efficiency and plant capacity measures under NC can be computed by adding the binary integer constraint \(\lambda _j\in \{0,1\}\) to the linear programs under C.

Using nonparametric frontier technologies, one can obtain the weighted Färe-Lovell output efficiency measure relative to production correspondence \(P(\varvec{x})\) for an evaluated observation (\(\varvec{x_k},\varvec{y_k}),k=1,...,n\) as

$$\begin{aligned} \begin{array}{llll} WNDF_o(\varvec{x_k},\varvec{y_k})=& \max \limits _{\theta _r,\lambda _j}& \sum \limits _{r=1}^s\mu _r\theta _r \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}\le x_{ik},i=1,...,m,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \theta _r y_{rk},r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & \theta _r\ge 1,\lambda _j\ge 0,r=1,...,s,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.1)

By analogy, the weighted Färe-Lovell output efficiency measure relative to production correspondence \(P^f(\varvec{x^f})\) observation (\(\varvec{x_k},\varvec{y_k}),k=1,...,n\) is computed as

$$\begin{aligned} \begin{array}{llll} WNDF_o^f(\varvec{x_k^f},\varvec{y_k})=& \max \limits _{\theta _r,\lambda _j,x_{k}^v}& \sum \limits _{r=1}^s\mu _r\theta _r \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le x_{k}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \theta _r y_{rk},r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & x_{k}^v\ge 0,\theta _r\ge 1,\lambda _j\ge 0,r=1,...,s,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.2)

The Färe-Lovell output efficiency measures relative to production correspondence \(P(\varvec{x})\) for observation (\(\varvec{x_k},\varvec{y_k}),k=1,...,n\) as

$$\begin{aligned} \begin{array}{llll} NDF_o(\varvec{x_k},\varvec{y_k})=& \max \limits _{\theta _r,\lambda _j}& \frac{1}{s}\sum \limits _{r=1}^s\theta _r \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}\le x_{ik},i=1,...,m,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \theta _r y_{rk},r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & \theta _r\ge 1,\lambda _j\ge 0,r=1,...,s,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.3)

By analogy, the Färe-Lovell output efficiency measure relative to production correspondence \(P^f(\varvec{x^f})\) observation (\(\varvec{x_k},\varvec{y_k}),k=1,...,n\) is computed as

$$\begin{aligned} \begin{array}{llll} NDF_o^f(\varvec{x_k^f},\varvec{y_k})=& \max \limits _{\theta _r,\lambda _j,x_{k}^v}& \frac{1}{s}\sum \limits _{r=1}^s\theta _r \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le x_{k}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \theta _r y_{rk},r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & x_{k}^v\ge 0,\theta _r\ge 1,\lambda _j\ge 0,r=1,...,s,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.4)

We can obtain the sub-vector weighted Färe-Lovell input efficiency measure relative to input correspondence \(L(\varvec{y})\) for observation \((\varvec{x_k},\varvec{y_k})\) as:

$$\begin{aligned} \begin{array}{llll} WNDF_i^{SR}(\varvec{x_k^f},\varvec{x_k^v},\varvec{y_k})=& \min \limits _{\beta _i,\lambda _j}& \sum \limits _{i=1}^{m^v}\eta _i\beta _i \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le \beta _i x_{ik}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge y_{rk},r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & 0\le \beta _i \le 1,\lambda _j\ge 0,i=1,...,m^v,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.5)

By analogy, the sub-vector weighted Färe-Lovell input efficiency measure relative to input correspondence \(L(\epsilon )\) is computed as:

$$\begin{aligned} \begin{array}{llll} WNDF_i^{SR}(\varvec{x_k^f},\varvec{x_k^v},\epsilon )=& \min \limits _{\beta _i,\lambda _j}& \sum \limits _{i=1}^{m^v}\eta _i\beta _i \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le \beta _i x_{ik}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \epsilon ,r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & 0\le \beta _i \le 1,\lambda _j\ge 0,i=1,...,m^v,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.6)

One can obtain the sub-vector Färe-Lovell input efficiency measure relative to input set \(L(\varvec{y})\) for observation \((\varvec{x_k},\varvec{y_k})\) as:

$$\begin{aligned} \begin{array}{llll} NDF_i^{SR}(\varvec{x^f_k},\varvec{x^v_k},\varvec{y_k})=& \min \limits _{\beta _i,\lambda _j}& \frac{1}{m^v}\sum \limits _{i=1}^{m^v}\beta _i \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le \beta _i x_{ik}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge y_{rk},r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & 0\le \beta _i \le 1,\lambda _j\ge 0,i=1,...,m^v,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.7)

By analogy, the biased Färe-Lovell I-O PCU measure for observation \((\varvec{x_k},\varvec{y_k})\) is computed as:

$$\begin{aligned} \begin{array}{llll} NDF_i^{SR}(\varvec{x^f_k},\varvec{x^v_k},\epsilon )=& \min \limits _{\beta _i,\lambda _j}& \frac{1}{m^v}\sum \limits _{i=1}^{m^v}\beta _i \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le \beta _i x_{ik}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \epsilon ,r=1,...,s,\\ & & \sum \limits _{j=1}^n\lambda _j=1\\ & & 0\le \beta _i \le 1,\lambda _j\ge 0,i=1,...,m^v,\\ \end{array} \end{aligned}$$
(B.8)

We can model the attainable Färe-Lovell output efficiency measure at level \(\bar{\xi }\) as

$$\begin{aligned} \begin{array}{llll} ANDF_o^f(\varvec{x_k^f},\varvec{y_k},\bar{\xi })=& \max \limits _{\theta _r,\lambda _j}& \frac{1}{s}\sum \limits _{r=1}^s\theta _r \\ & s.t& \sum \limits _{j=1}^n\lambda _j x_{ij}^f\le x_{ik}^f,i=1,...,m^f,\\ & & \sum \limits _{j=1}^n\lambda _j x_{ij}^v\le x_{i}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j y_{rj}\ge \theta _r y_{rk},r=1,...,s,\\ & & x_{i}^v\le \bar{\xi }_i x_{ik}^v,i=1,...,m^v,\\ & & \sum \limits _{j=1}^n\lambda _j=1,\\ & & \theta _r\ge 0,\lambda _j\ge 0,r=1,...,s,j=1,...,n.\\ \end{array} \end{aligned}$$
(B.9)

The constraint \(x_{i}^v\le \bar{\xi }_i x_{ik}^v,i=1,...,m^v\) establishes a link between the observed ith variable input and the decision variable \(x_{i}^v\) via \(\bar{\xi }_i\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerstens, K., Sadeghi, J. & Tao, X. Nonradial plant capacity concepts: proposals and attainability. Ann Oper Res 345, 169–205 (2025). https://doi.org/10.1007/s10479-024-06423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-024-06423-5

Keywords

JEL Classification