Abstract
We study internal structures in the category of algebras for an operad, and show that these themselves admit an operadic description. The main case of interest is where the operad is on an abelian category, and the internal structures in question are those of internal category, internaln-category, or internal (cubical) n-tuple category. This allows an operadic treatment of crossed modules and other crossed structures.
Similar content being viewed by others
References
Bastiani, A. and Ehresmann, C.: Categories of sketched structures, Cahiers Topologie Géom. Différentielle Catég. 13 (1972), 105–214.
Baues, H.-J., Minian, E. and Richter, B.: Crossed modules over operads and operadic cohomology, K-Theory 31 (2004), 39–69.
Brown, R. and Higgins, P. J.: The equivalence of ∞-groupoids and crossed complexes, Cahiers Topologie Géom. Différentielle Catég. 22 (1981), 374–386.
Day, B.: A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), 1–11.
Day, B. J. and Street, R. H.: Kan extensions along promonoidal functors, Theory Appl. Categ. 1 (1995), 72–78.
Ehresmann, C.: Esquisses et types de structures algébriques, Bul. Inst. Politehn. Iasi (N.S.) 14(18) (1968), 1–14.
Ellis, G. J.: Higher-dimensional crossed modules of algebras, J. Pure Appl. Algebra 52 (1988), 277–282.
Freyd, P. J. and Kelly, G. M.: Categories of continuous functors I, J. Pure Appl. Algebra (1972).
Gabriel, P. and Ulmer, F.: Lokal Präsentierbare Kategorien, Lecture Notes in Math. 221, Springer, Berlin, 1971.
Janelidze, G.: Internal crossed modules, Georgian Math. J. 10 (2003), 99–114.
Joyal, A. and Street, R.: Pullbacks equivalent to pseudopullbacks, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), 153–156.
Kelly, G. M.: Doctrinal adjunction, in Sydney Category Seminar, Lecture Notes in Math. 420, Springer, Berlin, 1974.
Kelly, G. M.: Basic Concepts of Enriched Category Theory, LMS Lecture Notes Series 64, Cambridge University Press, Cambridge, 1982.
Kennison, J.: On limit-preserving functors, Illinois J. Math. 12 (1968), 616–619.
Loday, J.-L. et al. (eds): Operads: Proceedings of Renaissance Conferences, Contemporary Mathematics 202, Amer. Math. Soc., Providence, RI, 1997.
Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer, Berlin, 1971.
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classifications (2000)
18D50, 18D05, 18G50, 18C35.
Simona Paoli: The second author would like to thank the members of the Department of Mathematics at Macquarie University for their hospitality during July–November 2003.
Stephen Lack: Support of the Australian Research Council is gratefully acknowledged.
Rights and permissions
About this article
Cite this article
Lack, S., Paoli, S. An Operadic Approach to Internal Structures. Appl Categor Struct 13, 205–222 (2005). https://doi.org/10.1007/s10485-005-2959-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10485-005-2959-4