Skip to main content
Log in

An Operadic Approach to Internal Structures

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We study internal structures in the category of algebras for an operad, and show that these themselves admit an operadic description. The main case of interest is where the operad is on an abelian category, and the internal structures in question are those of internal category, internaln-category, or internal (cubical) n-tuple category. This allows an operadic treatment of crossed modules and other crossed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastiani, A. and Ehresmann, C.: Categories of sketched structures, Cahiers Topologie Géom. Différentielle Catég. 13 (1972), 105–214.

    Google Scholar 

  2. Baues, H.-J., Minian, E. and Richter, B.: Crossed modules over operads and operadic cohomology, K-Theory 31 (2004), 39–69.

    Google Scholar 

  3. Brown, R. and Higgins, P. J.: The equivalence of ∞-groupoids and crossed complexes, Cahiers Topologie Géom. Différentielle Catég. 22 (1981), 374–386.

    Google Scholar 

  4. Day, B.: A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), 1–11.

    Google Scholar 

  5. Day, B. J. and Street, R. H.: Kan extensions along promonoidal functors, Theory Appl. Categ. 1 (1995), 72–78.

    Google Scholar 

  6. Ehresmann, C.: Esquisses et types de structures algébriques, Bul. Inst. Politehn. Iasi (N.S.) 14(18) (1968), 1–14.

    Google Scholar 

  7. Ellis, G. J.: Higher-dimensional crossed modules of algebras, J. Pure Appl. Algebra 52 (1988), 277–282.

    Google Scholar 

  8. Freyd, P. J. and Kelly, G. M.: Categories of continuous functors I, J. Pure Appl. Algebra (1972).

  9. Gabriel, P. and Ulmer, F.: Lokal Präsentierbare Kategorien, Lecture Notes in Math. 221, Springer, Berlin, 1971.

    Google Scholar 

  10. Janelidze, G.: Internal crossed modules, Georgian Math. J. 10 (2003), 99–114.

    Google Scholar 

  11. Joyal, A. and Street, R.: Pullbacks equivalent to pseudopullbacks, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), 153–156.

    Google Scholar 

  12. Kelly, G. M.: Doctrinal adjunction, in Sydney Category Seminar, Lecture Notes in Math. 420, Springer, Berlin, 1974.

    Google Scholar 

  13. Kelly, G. M.: Basic Concepts of Enriched Category Theory, LMS Lecture Notes Series 64, Cambridge University Press, Cambridge, 1982.

    Google Scholar 

  14. Kennison, J.: On limit-preserving functors, Illinois J. Math. 12 (1968), 616–619.

    Google Scholar 

  15. Loday, J.-L. et al. (eds): Operads: Proceedings of Renaissance Conferences, Contemporary Mathematics 202, Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  16. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer, Berlin, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lack.

Additional information

Mathematics Subject Classifications (2000)

18D50, 18D05, 18G50, 18C35.

Simona Paoli: The second author would like to thank the members of the Department of Mathematics at Macquarie University for their hospitality during July–November 2003.

Stephen Lack: Support of the Australian Research Council is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lack, S., Paoli, S. An Operadic Approach to Internal Structures. Appl Categor Struct 13, 205–222 (2005). https://doi.org/10.1007/s10485-005-2959-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-005-2959-4

Keywords