Skip to main content
Log in

Perfect MV-algebras and their Logic

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In this paper, after recounting the basic properties of perfect MV-algebras, we explore the role of such algebras in localization issues. Further, we analyze some logics that are based on Łukasiewicz connectives and are complete with respect to linearly ordered perfect MV-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belluce, L.P.: Semisimple algebras of infinite-valued logic. Canad. J. Math. 38, 1356–1379 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Belluce, L.P.: The going up and going down theorems in MV-algebras and abelian ℓ-groups. J. Math. Anal. Appl. 241, 92–106 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belluce, L.P., Chang, C.C.: A weak completeness theorem for infinite valued predicate logic. J. Symbolic Logic 28, 43–50 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belluce, L.P., Di Nola, A.: Yosida type representation for perfect MV-algebras. Math. Logic Quart. 42, 551–563 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Belluce, L.P., Di Nola, A.: The MV-algebra of first order Łukasiewicz logic. Tatra Mt. Math. Publ. 27, 7–22 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Belluce, L.P., Di Nola, A., Lettieri, A.: Local MV-algebras. Rend. Circ. Mat. Palermo 42(2), 347–361 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)

    Google Scholar 

  9. Di Nola, A., Lettieri, A.: Perfect MV-algebras are categorically equivalent to abelian ℓ-groups. Stud. Logic 88, 467–490 (1958)

    Google Scholar 

  10. Łukasiewicz, J., Tarski, A.: Unntersuchungen über den Aussagenkalkul. Comptes Rendus des seances de la Societe des Sciences et des Lettres de Varsovie 23(cl iii), 30–50 (1930)

    Google Scholar 

  11. Mundici, D.: Interpretation of AF C *-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Scarpellini, B.: Die Nichaxiomatisierbarkeit des unendlichwertigen Pradikatenkalkulus von Lukasiewicz. J. Symbolic Logic 27, 159–170 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Nola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belluce, L.P., Di Nola, A. & Gerla, B. Perfect MV-algebras and their Logic. Appl Categor Struct 15, 135–151 (2007). https://doi.org/10.1007/s10485-007-9069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-007-9069-4

Key words

Mathematics Subject Classifications (2000)

Navigation