Skip to main content
Log in

Duals Invert

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Monoidal objects (or pseudomonoids) in monoidal bicategories share many of the properties of the paradigmatic example: monoidal categories. The existence of (say, left) duals in a monoidal category leads to a dualization operation which was abstracted to the context of monoidal objects by Day et al. (Appl Categ Struct 11:229–260, 2003). We define a relative version of this called exact pairing for two arrows in a monoidal bicategory; when one of the arrows is an identity, the other is a dualization. In this context we supplement results of Day et al. (Appl Categ Struct 11:229–260, 2003) (and even correct one of them) and only assume the existence of biduals in the bicategory where necessary. We also abstract recent work of Day and Pastro (New York J Math 14:733–742, 2008) on Frobenius monoidal functors to the monoidal bicategory context. Our work began by focusing on the invertibility of components at dual objects of monoidal natural transformations between Frobenius monoidal functors. As an application of the abstraction, we recover a theorem of Walters and Wood (Theory Appl Categ 3:25–47, 2008) asserting that, for objects A and X in a cartesian bicategory , if A is Frobenius then the category Map(X,A) of left adjoint arrows is a groupoid. Also, the characterization in Walters and Wood (Theory Appl Categ 3:25–47, 2008) of left adjoint arrows between Frobenius objects of a cartesian bicategory is put into our current setting. In the same spirit, we show that when a monoidal object admits a dualization, its lax centre coincides with the centre defined in Street (Theory Appl Categ 13:184–190, 2004). Finally we look at the relationship between lax duals for objects and adjoints for arrows in a monoidal bicategory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bénabou, J.: Introduction to bicategories. Reports of the Midwest Category Seminar, pp. 1–77. Springer, Berlin (1967)

    Google Scholar 

  2. Cockett, J.R.B., Koslowski, J., Seely, R.A.G.: Introduction to linear bicategories. Math. Struct. Comput. Sci. 10(2), 165–203 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carboni, A., Kelly, G.M., Walters, R.F.C., Wood, R.J.: Cartesian bicategories II. Theory Appl. Categ. 19(CT2006), 93–124

  4. Cockett, J.R.B., Seely, R.A.G.: Linearly distributive functors. J. Pure App. Algebra 143, 155–203 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Day, B.J., McCrudden, P., Street, R.: Dualization and antipodes. Appl. Categ. Struct. 11, 229–260 (2003)

    Article  MathSciNet  Google Scholar 

  6. Day, B.J., Pastro, C.: Note on Frobenius monoidal functors. New York J. Math. 14, 733–742 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Day, B.J., Panchadcharam, E., Street, R.: Lax braidings and the lax centre. In: Hopf Algebras and Generalizations. Contemp. Math., vol. 441, pp. 1–17. American Mathematical Society, Providence (2007)

    Google Scholar 

  8. Day, B.J., Street, R.: Monoidal bicategories and Hopf algebroids. Adv. Math. 129, 99–157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Amer. Math. Soc. 117(558), vi+81 (1995)

    MathSciNet  Google Scholar 

  10. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Katis, P., Walters, R.F.C.: The compact closed bicategory of left adjoints. Math. Proc. Camb. Phil. Soc. 130, 77–87 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kelly, G.M.: Doctrinal adjunction. Category Seminar (Proc. Sem., Sydney, 1972/1973). In: Lecture Notes in Math., vol. 420, pp. 75–103. Springer, Berlin (1974)

    Google Scholar 

  13. Kelly, G.M., Street, R.: Review of the elements of 2-categories. In: Category Seminar (Proc. Sem., Sydney, 1972/1973). Lecture Notes in Math., vol. 420, pp. 75–103. Springer, Berlin (1974)

    Google Scholar 

  14. Lack, S.: A coherent approach to pseudomonads. Adv. Math. 152(2), 179–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. López Franco, I.: Hopf modules for autonomous pseudomonoids and the monoidal centre. arXiv:0710.3853v2 [math.CT] 27 Dec 2007.

  16. López Franco, I.: Formal Hopf algebra theory I: Hopf modules for pseudomonoids. J. Pure Appl. Algebra 213(6), 1046–1063 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. López Franco, I.: Formal Hopf algebra theory II: lax centres. J. Pure Appl. Algebra 213(11), 2038–2054 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Marmolejo, F.: Doctrines whose structure forms a fully faithful adjoint string. Theory Appl. Categ. 2, 24–44 (1997)

    MathSciNet  Google Scholar 

  19. McCrudden, P.: Balanced coalgebroids. Theory Appl. Categ. 7, 71–147 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Saavedra Rivano, N.: Catégories Tannakiennes. Lecture Notes in Math., vol. 265. Springer, Berlin (1972)

    MATH  Google Scholar 

  21. Schauenburg, P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158, 325–346 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Street, R.: Functorial calculus in monoidal bicategories. Appl. Categ. Struct. 11, 219–227 (2003)

    Article  MathSciNet  Google Scholar 

  23. Street, R.: The monoidal centre as a limit. Theory Appl. Categ. 13, 184–190 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Szlachányi, K.: Finite quantum groupoids and inclusions of finite type. In: Mathematical Physics in Mathematics and Physics (Siena, 2000). Fields Inst. Commun., vol. 30, pp. 393–407. American Mathematical Society, Providence (2001)

    Google Scholar 

  25. Szlachányi, K.: Adjointable monoidal functors and quantum groupoids. In: Hopf Algebras in Noncommutative Geometry and Physics. Lecture Notes in Pure and Appl. Math., vol. 239, pp. 291–307. Dekker, New York (2005)

    Google Scholar 

  26. Walters, R.F.C., Wood, R.J.: Frobenius objects in cartesian bicategories. Theory Appl. Categ. 3, 25–47 (2008)

    MathSciNet  Google Scholar 

  27. Yetter, D.: Quantum groups and representations of monoidal categories. Math. Proc. Camb. Philos. Soc. 108(2), 261–290 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Wood.

Additional information

In memory of Max

The first author was supported by an Internal Graduate Studentship at Trinity College, Cambridge, and by the Fondation Sciences Mathématiques de Paris.

The second and third authors gratefully acknowledge financial support from the Australian ARC and the Canadian NSERC. Diagrams typeset using M. Barr’s diagram package, diagxy.tex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López Franco, I., Street, R. & Wood, R.J. Duals Invert. Appl Categor Struct 19, 321–361 (2011). https://doi.org/10.1007/s10485-009-9210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-009-9210-7

Keywords

Mathematics Subject Classification (2000)

Navigation