Skip to main content
Log in

Intermutation

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

This paper proves coherence results for categories with a natural transformation called intermutation made of arrows from (A ∧ B) ∨ (C ∧ D) to (A ∨ C) ∧ (B ∨ D), for ∧ and ∨ being two biendofunctors. Intermutation occurs in iterated, or n-fold, monoidal categories, which were introduced in connection with n-fold loop spaces, and for which a related, but different, coherence result was obtained previously by Balteanu, Fiedorowicz, Schwänzl and Vogt. The results of the present paper strengthen up to a point this previous result, and show that two-fold loop spaces arise in the manner envisaged by these authors out of categories of a more general kind, which are not two-fold monoidal in their sense. In particular, some categories with finite products and coproducts are such. Coherence in Mac Lane’s “all diagrams commute” sense is proved here first for categories where for ∧ and ∨ one assumes only intermutation, and next for categories where one also assumes natural associativity isomorphisms. Coherence in the sense of coherence for symmetric monoidal categories is proved when one assumes moreover natural commutativity isomorphisms for ∧ and ∨. A restricted coherence result, involving a proviso of the kind found in coherence for symmetric monoidal closed categories, is proved in the presence of two nonisomorphic unit objects. The coherence conditions for intermutation and for the unit objects are derived from a unifying principle, which roughly speaking is about preservation of structures involving one endofunctor by another endofunctor, up to a natural transformation that is not an isomorphism. This is related to weakening the notion of monoidal functor. A similar, but less symmetric, justification for intermutation was envisaged in connection with iterated monoidal categories. Unlike the assumptions previously introduced for two-fold monoidal categories, the assumptions for the unit objects of the categories of this paper, which are more general, allow an interpretation in logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baez, J.C., Neuchl, M.: Higher-dimensional algebra I. Braided monoidal 2-categories. Adv. Math. 121, 196–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balteanu, C., Fiedorowicz, Z., Schwänzl, R., Vogt, R.: Iterated monoidal categories. Adv. Math. 176, 277–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bénabou, J.: Introduction to bicategories, reports of the midwest category seminar. In: Bénabou, J., et al. (eds.) Lecture Notes in Mathematics, vol. 47, pp. 1–77. Springer, Berlin (1967)

    Google Scholar 

  5. Brünnler, K.: Atomic cut elimination for classical logic, computer science logic. In: Baaz, M., Makowsky, J.A. (eds.) Lecture Notes in Computer Science, vol. 2803, pp. 86–97. Springer, Berlin (2003)

    Google Scholar 

  6. Brünnler, K.: Cut elimination inside a deep inference system for classical predicate logic. Stud. Log. 82, 51–71 (2006)

    Article  MATH  Google Scholar 

  7. Brünnler, K., Tiu, A.F.: A local system for classical logic, logic for programming, artificial intelligence and reasoning. In: Nieuwenhuis, R., Voronkov, A. (eds.) Lecture Notes in Computer Science, vol. 2250, pp. 347–361. Springer, Berlin (2001)

    Google Scholar 

  8. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22, 465–476 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Došen, K., Petrić, Z.: Cartesian isomorphisms are symmetric monoidal: a justification of linear logic. J. Symb. Log. 64, 227–242 (1999)

    Article  MATH  Google Scholar 

  10. Došen, K., Petrić, Z.: Proof-Theoretical Coherence. KCL (College Publications), London (2004). Revised version available at: http://www.mi.sanu.ac.rs/~kosta/coh.pdf

    MATH  Google Scholar 

  11. Došen, K., Petrić, Z.: Proof-Net Categories. Polimetrica, Monza (2007). Available at: http://www.mi.sanu.ac.rs/~kosta/pn.pdf

    Google Scholar 

  12. Došen, K., Petrić, Z.: Coherence for star-autonomous categories. Ann. Pure Appl. Logic 141, 225–242 (2006). Available at: http://arXiv.org/math.CT/0503306

    Article  MathSciNet  MATH  Google Scholar 

  13. Došen, K., Petrić, Z.: Medial commutativity. Ann. Pure Appl. Logic 146, 237–255 (2007). Available at: http://arXiv.org/math.CT/0610934

    MathSciNet  MATH  Google Scholar 

  14. Eilenberg, S., Kelly, G.M.: Closed categories. In: Eilenberg, S., et al. (eds.) Proceedings of the Conference on Categorical Algebra, La Jolla 1965, pp. 421–562. Springer, Berlin (1966)

    Google Scholar 

  15. Forcey, S., Siehler, J., Seth Sowers, E.: Operads in iterated monoidal categories. J. Homotopy Relat. Struct. 2, 1–43 (2007). (electronic, previously entitled Combinatoric n-fold categories and n-fold operads, available at: http://arXiv.org/math.CT/0411561)

    MathSciNet  MATH  Google Scholar 

  16. Ježek, J., Kepka, T.: Medial Groupoids. Rozpravy Československé Akademie Věd, Řada matematických a přirodních věd, Ročnik 93, Sešit 2, p. 93. Prague (1983)

  17. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kelly, G.M., Mac Lane, S.: Coherence in closed categories. J. Pure Appl. Algebra 1, 97–140, 219 (1971)

    Article  Google Scholar 

  19. Lamarche, F.: Exploring the gap between linear and classical logic. Theory Appl. Categ. 18, 473–535 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics: A First Introduction to Categories. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  21. Mac Lane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49, 28–46 (1963)

    MathSciNet  Google Scholar 

  22. Mac Lane, S.: Categories for the Working Mathematician, expanded 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  23. Street, R.: Two constructions on lax functors. Cah. Topol. Géom. Différ. 13, 217–264 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Petrić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Došen, K., Petrić, Z. Intermutation. Appl Categor Struct 20, 43–95 (2012). https://doi.org/10.1007/s10485-010-9228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-010-9228-x

Keywords

Mathematics Subject Classifications (2010)

Navigation