Abstract
We investigate what is the common part of the action accessible and the fibrewise algebraically cartesian closed (facc) categories dealing with the existence of centralizers of equivalence relations. Doing this, we shall introduce some new aspects of the Beck-Chevalley commutation with respect to the fibration of points \(\P _{\mathbb C}\) and shall characterize the existence of those centralizers by a specific property of this same fibration.
Similar content being viewed by others
References
Barr, M.: Exact categories. Springer L.N. Math. 236, 1–120 (1971)
Borceux, F., Bourn, D.: Mal’cev, protomodular, homological and semi-abelian categories. In: Mathematics and its Applications, vol. 566. Kluwer (2004)
Borceux, F., Janelidze, G., Kelly, G.M.: Internal object actions. Comment. Math. Univ. Carol. 46, 235–255 (2005)
Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)
Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. Springer L.N. 1488, 43–62 (1991)
Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4, 307–327 (1996)
Bourn, D.: Intrinsic centrality and associated classifying properties. J. Algebra 256, 126–145 (2002)
Bourn, D.: Centralizer and faithful groupoid. J. Algebra 328, 43–76 (2011)
Bourn, D., Gran, M.: Centrality and connectors in Maltsev categories. Algebra Univers. 48, 309–331 (2002)
Bourn, D., Gray, J.RA.: Aspects of algebraic exponentiation. Bull. Belg. Math. Soc. Simon Stevin 19, 823–846 (2012)
Bourn, D., Janelidze, G.: Centralizers in action accessible categories. Cahiers de Top. et Géom Diff. Catég. 50, 211–232 (2009)
Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69, 271–284 (1991)
Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. CMS Conf. Proc. 13, 97–109 (1992)
Gray, J.RA.: Algebraic exponentiation in general categories. Appl. Categ. Struct. 20, 543–567 (2012)
Gray, J.RA.: Algebraic exponentiation for categories of Lie algebras. J. Pure Appl. Algebra 216, 1964–1967 (2012)
Huq, S.A.: Commutator, nilpotency and solvability in categories. Q. J. Oxford 19, 363–389 (1968)
Johnstone, P.T.: Topos Theory, p 367. Academic Press, New York (1977)
Pedicchio, M.C.: A categorical approach to commutator theory. J. Algebra 177, 647–657 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to George Janelidze on the occasion of his sixtieth birthday
Rights and permissions
About this article
Cite this article
Bourn, D. Two Ways to Centralizers of Equivalence Relations. Appl Categor Struct 22, 833–856 (2014). https://doi.org/10.1007/s10485-013-9347-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-013-9347-2
Keywords
- Fibration of points
- Beck-Chevalley commutation
- Centralizer
- Unital, Mal’cev and protomodular categories
- Action accessible and fiberwise algebraically cartesian closed categories