Skip to main content
Log in

Two Ways to Centralizers of Equivalence Relations

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We investigate what is the common part of the action accessible and the fibrewise algebraically cartesian closed (facc) categories dealing with the existence of centralizers of equivalence relations. Doing this, we shall introduce some new aspects of the Beck-Chevalley commutation with respect to the fibration of points \(\P _{\mathbb C}\) and shall characterize the existence of those centralizers by a specific property of this same fibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, M.: Exact categories. Springer L.N. Math. 236, 1–120 (1971)

    Google Scholar 

  2. Borceux, F., Bourn, D.: Mal’cev, protomodular, homological and semi-abelian categories. In: Mathematics and its Applications, vol. 566. Kluwer (2004)

  3. Borceux, F., Janelidze, G., Kelly, G.M.: Internal object actions. Comment. Math. Univ. Carol. 46, 235–255 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. Springer L.N. 1488, 43–62 (1991)

    MathSciNet  Google Scholar 

  6. Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4, 307–327 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourn, D.: Intrinsic centrality and associated classifying properties. J. Algebra 256, 126–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourn, D.: Centralizer and faithful groupoid. J. Algebra 328, 43–76 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourn, D., Gran, M.: Centrality and connectors in Maltsev categories. Algebra Univers. 48, 309–331 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bourn, D., Gray, J.RA.: Aspects of algebraic exponentiation. Bull. Belg. Math. Soc. Simon Stevin 19, 823–846 (2012)

    MathSciNet  Google Scholar 

  11. Bourn, D., Janelidze, G.: Centralizers in action accessible categories. Cahiers de Top. et Géom Diff. Catég. 50, 211–232 (2009)

    MATH  MathSciNet  Google Scholar 

  12. Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69, 271–284 (1991)

    Article  MathSciNet  Google Scholar 

  13. Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. CMS Conf. Proc. 13, 97–109 (1992)

    MathSciNet  Google Scholar 

  14. Gray, J.RA.: Algebraic exponentiation in general categories. Appl. Categ. Struct. 20, 543–567 (2012)

    Article  MATH  Google Scholar 

  15. Gray, J.RA.: Algebraic exponentiation for categories of Lie algebras. J. Pure Appl. Algebra 216, 1964–1967 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huq, S.A.: Commutator, nilpotency and solvability in categories. Q. J. Oxford 19, 363–389 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Johnstone, P.T.: Topos Theory, p 367. Academic Press, New York (1977)

    MATH  Google Scholar 

  18. Pedicchio, M.C.: A categorical approach to commutator theory. J. Algebra 177, 647–657 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bourn.

Additional information

Dedicated to George Janelidze on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourn, D. Two Ways to Centralizers of Equivalence Relations. Appl Categor Struct 22, 833–856 (2014). https://doi.org/10.1007/s10485-013-9347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9347-2

Keywords

Mathematics Subject Classification (2010)