Skip to main content
Log in

Mining bridging rules between conceptual clusters

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Bridging rules take the antecedent and action from different conceptual clusters. They are distinguished from association rules (frequent itemsets) because (1) they can be generated by the infrequent itemsets that are pruned in association rule mining, and (2) they are measured by their importance including the distance between two conceptual clusters, whereas frequent itemsets are measured only by their support. In this paper, we first design two algorithms for mining bridging rules between clusters, and then propose two non-linear metrics to measure their interestingness. We evaluate these algorithms experimentally and demonstrate that our approach is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann, San Mateo

    Google Scholar 

  2. Suzuki E (1997) Autonomous discovery of reliable exception rules. In: Proceedings of KDD97, pp 259–262

  3. Suzuki E, Shimura M (1996) Exceptional knowledge discovery in databases based on information theory. In: Proceedings of KDD96, pp 275–278

  4. Hussain F, Liu H, Suzuki E, Lu H (2000) Exception rule mining with a relative interestiness measure. In: Proceedings of PAKDD00, pp 86–97

  5. Hwang S, Ho S, Tang J (1999) Mining exception instances to facilitate workflow exception handling. In: Proceedings of DASFAA99, pp 45–52

  6. Liu H, Lu H, Feng L, Hussain F (1999) Efficient search of reliable exceptions. In: Proceedings of PAKDD99, pp 194–204

  7. Padmanabhan B, Tuzhilin A (1998) A belief-driven method for discovering unexpected patterns. In: Proceedings of ACM SIGKDD98, pp 94–100

  8. Padmanabhan B, Tuzhilin A (2000) Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings of ACM SIGKDD00, pp 54–63

  9. Perner P (2002) Data mining on multimedia data, vol 2558. Springer, Berlin, Heidelberg, New York. ISBN: 3-540-00317-7

    MATH  Google Scholar 

  10. Wu X, Zhang C, Zhang S (2002) Mining both positive and negative association rules. In: ICML02, Sydney, Australia, pp 658–665

  11. Barnett V, Lewis T (1994) Outliers in statistical data. Wiley, New York

    MATH  Google Scholar 

  12. Edwin M, Raymond T (1998) Algorithms for mining distance-based outlier in large datasets. In: Proceedings of the 24th international conference on very large databases, pp 392–403

  13. Arning A, Agrawal R, Raghavan P (1996) A linear method for deviation detection in large databases. In: Proc 1996 int conf knowledge discovery and data mining, Portland, Oregon, August 1996, pp 164–169

  14. Johnson T, Kwok I, Ng RT (1998) Fast computation of 2-dimensional depth contours. In: Proc KDD-98, pp 224–228

  15. Breunig MM, Kriegel H-P, Ng RT et al. (2000) Identifying density-based local outliers. In: Proc ACM int conf on management of data, Daller, TX

  16. Sarawagi S, Agrawal R, Megiddo N (1998) Discovery riven exploration of OLAP data cubes. In: Proc sixth int conf on extending database technology, Valencia, Spain, March 1998

  17. Liu B, Hsu W, Han H, Xia Y (2000) Mining changes for real-life applications. In: DaWaK00, pp 337–346

  18. Liu B, Hsu W, Mun L, Lee H (1999) Finding interesting patterns using user expectations. IEEE Trans Knowl Data Eng 11(6):817–832

    Article  Google Scholar 

  19. Karypis G, Han E, Kumar V (1999) CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. In: IEEE computer, pp 68–75

  20. Ke Y (2006) Mining quantitative correlated patterns using an information-theoretic approach. In: KDD-06, pp 227–236

  21. Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel hypergraph partitioning: applications. In: VLSI domain 34th design automation conference, Anaheim, California

  22. Bay SD, Pazzani MJ (2001) Detecting group differences: mining contrast sets. Data Min Knowl Discov 5(3):213–246

    Article  MATH  Google Scholar 

  23. Eppstein D, Paterson M, Yao F (1997) On nearest-neighbor graphs. Discrete Comput Geom 17:263–282

    Article  MATH  MathSciNet  Google Scholar 

  24. Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large database sets. In: Proceedings of ACM SIGMOD-00, pp 427–438

  25. Zhang S, Zhang C (2002) Anytime mining for multiuser applications. IEEE Trans Syst, Man Cybern (Part A) 32(4):515–521

    Article  Google Scholar 

  26. Wu X, Kumar V, Quinlan R, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P, Zhou Z, Steinbach M, Hand D, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37

    Article  Google Scholar 

  27. Schmidt J, Hapfelmeier A, Mueller M, Perneczky R, Kurz A, Drzezga A, Kramer S (2010) Interpreting PET scans by structured patient data: a data mining case study in dementia research. Knowl Inf Syst 24(1):149–170

    Article  Google Scholar 

  28. Rasheed F, Alhajj R (2010) STNR: A suffix tree based noise resilient algorithm for periodicity detection in time series databases. Appl Intell 32(3):364–377

    Article  Google Scholar 

  29. Wallenta C, Kim J, Bentley P, Hailes S (2010) Detecting interest cache poisoning in sensor networks using an artificial immune algorithm. Appl Intell 32(1):1–26

    Article  Google Scholar 

  30. Hamalainen W (2010) StatApriori: an efficient algorithm for searching statistically significant association rules. Knowl Inf Syst 23(3):373–399

    Article  MathSciNet  Google Scholar 

  31. Boley Mario, Grosskreutz Henrik (2009) Approximating the number of frequent sets in dense data. Knowl Inf Syst 21(1):65–89

    Article  Google Scholar 

  32. Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009) Mining frequent arrangements of temporal intervals. Know Inf Syst 22(2):133–171

    Article  Google Scholar 

  33. Brdiczka O et al (2009) Detecting small group activities from multimodal observations. Appl Intell 30(1):47–57 (2009)

    Article  Google Scholar 

  34. Kyriacou E et al (2009) Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl Intell 30(1):3–23 (2009)

    Article  Google Scholar 

  35. Adnan M, Alhajj R (2009) DRFP-tree: disk-resident frequent pattern tree. Appl Intell 30(2):84–97 (2009)

    Article  Google Scholar 

  36. Iglesias A et al (2009) Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning. Appl Intell 31(1):89–106 (2009)

    Article  Google Scholar 

  37. Wu C, Tsai C (2009) Robust classification for spam filtering by back-propagation neural networks using behavior-based features. Appl Intell 31(2):107–121 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Chen, F., Wu, X. et al. Mining bridging rules between conceptual clusters. Appl Intell 36, 108–118 (2012). https://doi.org/10.1007/s10489-010-0247-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-010-0247-y

Keywords

Navigation