Skip to main content
Log in

An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In domains with limited data, such as ballistic impact, prior researches have proven that the optimization of artificial neural models is an efficient tool for improving the performance of a classifier based on MultiLayer Perceptron. In addition, this research aims to explore, in the ballistic domain, the optimization of other machine learning strategies and their application in regression problems. Therefore, this paper presents an optimization methodology to use with several approaches of machine learning in regression problems, maximizing the limited dataset and locating the best network topology and input vector of each network model. This methodology is tested in real regression scenarios of ballistic impact with different artificial neural models, obtaining substantial improvement in all the experiments. Furthermore, the quality stage, based on criteria of information theory, enables the determination of when the complexity of the network design does not penalize the fit over the data and thereby the selection of the best neural network model from a series of candidates. Finally, the results obtained show the relevance of this methodology and its application improves the performance and efficiency of multiple machine learning strategies in regression scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. ABAQUS (2003) ABAQUS/Explicit v6.4 users manual. ABAQUS Inc, Richmond, USA

  2. Ahn B, Cho S, Kim C (2000) The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Syst Appl 18(2):65–74

    Article  Google Scholar 

  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  4. An G (1996) The effects of adding noise during backpropagation training on a generalization performance. Neural Comput 8(3):643–674

    Article  Google Scholar 

  5. Anlauf J, Biehl M (1989) The adatron: an adaptive perceptron algorithm. Europhys Lett 10:687–692

    Article  Google Scholar 

  6. Bermejo P, Joho H, Joemon M, Villa R (2008) Comparison of feature construction methods for video relevance prediction. Adv Multimed Model, pp 185–196

  7. Bisagni C, Lanzi L, Ricci S (2002) Optimization of helicopter subfloor components under crashworthiness requirements using neural networks. J Aircr 39(2):296–304

    Article  Google Scholar 

  8. Bishop C (1995) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7:108

    Article  Google Scholar 

  9. Bishop C (1996) Neural networks for pattern recognition. Oxford University Press, USA

    MATH  Google Scholar 

  10. Boger Z, Weber R (2000) Finding an optimal artificial neural network topology in real-life modeling—two approaches. In: ICSC symposium on neural computation

    Google Scholar 

  11. Breiman L, Spector P (1992) Submodel selection and evaluation in regression the x-random case. Int Stat Rev 60:291–319

    Article  Google Scholar 

  12. Burger M, Neubauer A (2003) Analysis of Tikhonov regularization for function approximation by neural networks. Neural Netw 16(1):79–90

    Article  Google Scholar 

  13. Carcenac M (2009) A modular neural network for super-resolution of human faces. Appl Intell 30:168–186. doi:10.1007/s10489-007-0109-4

    Article  Google Scholar 

  14. Cho SB, Shimohara K (1998) Evolutionary learning of modular neural networks with genetic programming. Appl Intell 9:191–200

    Article  Google Scholar 

  15. Cirrincione G, Cirrincione M (2003) A novel self-organizing neural network for motion segmentation. Appl Intell 18:27–35. doi:10.1023/A:1020970617241

    Article  MATH  Google Scholar 

  16. Cover T (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput EC-14(3):326–334

    Article  Google Scholar 

  17. Dietterich T (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923

    Article  Google Scholar 

  18. Diosan L, Rogozan A, Pecuchet JP Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters. App Intell (2010). doi:10.1007/s10489-010-0260-1

    Google Scholar 

  19. Durand N, Alliot JM, Médioni F (2000) Neural nets trained by genetic algorithms for collision avoidance. Appl Intell 13:205–213

    Article  Google Scholar 

  20. Feng C, Yu Z, Kingi U, Baig M (2005) Threefold vs fivefold cross validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. J Manuf Syst 24(2):93–107

    Article  Google Scholar 

  21. Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30(1):27–38

    Article  Google Scholar 

  22. Foley D (1972) Considerations of sample and feature size. IEEE Trans Inf Theory 18(5):618–626

    Article  MATH  Google Scholar 

  23. Garcia-Crespo A, Ruiz-Mezcua B, Fernandez D, Zaera R (2006) Prediction of the response under impact of steel armours using a multilayer perceptron. Neural Comput Appl 16(2):147–154

    Google Scholar 

  24. Garcia-Crespo A, Ruiz-Mezcua B, Gonzalez-Carrasco I, Lopez-Cuadrado J (2009) Multilayer perceptron training optimization for high speed impacts classification. Springer, Netherlands, pp 377–388

    Google Scholar 

  25. Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160(16):249–264

    Article  Google Scholar 

  26. Girosi F, Jones M, Poggio T (1995) Regularization theory and neural networks architectures. Neural Comput 7:219–269

    Article  Google Scholar 

  27. Gomez-Ruiz J, Jerez-Aragones J, Muñoz-Perez J, Alba-Conejo E (2004) A neural network based model for prognosis of early breast cancer. Appl Intell 20(3):231–238

    Article  Google Scholar 

  28. Gonzalez-Carrasco I (2010) Análisis, optimización y evaluación de modelos de redes de neuronas artificiales para la clasificación y predicción de impactos de alta velocidad sobre distintos materiales. PhD thesis, Universidad Carlos III de Madrid

  29. Gonzalez-Carrasco I, Garcia-Crespo A, Ruiz-Mezcua B, Lopez-Cuadrado J (2009) Dealing with limited data in ballistic impact scenarios: an empirical comparison of different neural network approaches. Appl Intell, 1–21

  30. Grochowski M, Dutch W (2007) Learning highly non-separable boolean functions using constructive feedforward neural network. In: Artificial neural networks. ICANN 2007. Springer, Berlin. pp 180–189

    Google Scholar 

  31. He Y, Sun Y (2001) Neural network-based l1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance. IEE Proc, Circuits Devices Syst 148(4):223–228

    Article  MathSciNet  Google Scholar 

  32. Henderson C, Potter W, McClendon R, Hoogenboom G (2000) Predicting aflatoxin contamination in peanuts: a genetic algorithm/neural network approach. Appl Intell 12:183–192

    Article  Google Scholar 

  33. Holldobler S, Kalinke Y, Storr H (1999) Approximating the semantics of logic programs by recurrent neural networks. Appl Intell 11:45–58. doi:10.1023/A:1008376514077

    Article  Google Scholar 

  34. Holmstrom L, Koistinen P (1992) Using additive noise in back-propagation training. IEEE Trans Neural Netw 3(1):24–38

    Article  Google Scholar 

  35. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  36. Ince R (2004) Prediction of fracture parameters of concrete by artificial neural networks. Eng Fract Mech 71(15):2143–2159

    Article  Google Scholar 

  37. Johnson G, Cook W (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and temperatures. In: International symposium ballistics

    Google Scholar 

  38. Jordan M (1986) Serial order: a parallel distributed processing approach. Tech rep, University of California, San Diego

  39. Kaikhah K, Garlick R (2000) Variable hidden layer sizing in Elman recurrent neuro-evolution. Appl Intell 12:193–205. doi:10.1023/A:1008315023738

    Article  Google Scholar 

  40. Karystinos G, Pados D (2000) On overfitting generalization, and randomly expanded training sets. IEEE Trans Neural Netw 11(5):1050–1057

    Article  Google Scholar 

  41. Kohonen T (1988) An introduction to neural computing. Neural Netw 1(1):3–16

    Article  Google Scholar 

  42. Koistinen P, Holmstrom L (1991) Kernel regression and backpropagation training with noise. In: IEEE international joint conference on neural networks, vol 1, pp 367–372

    Google Scholar 

  43. Krabbes M, Döschner C (2002) Modelling of complete robot dynamics based on a multi-dimensional, rbf-like neural architecture. Appl Intell 17:61–73. doi:10.1023/A:1015779731969

    Article  MATH  Google Scholar 

  44. Lanzi L, Bisagni C, Ricci S (2004) Neural network systems to reproduce crash behavior of structural components. Comput Struct 82(1):93–108

    Article  Google Scholar 

  45. Lefebvre C, Fancourt C, Principe JJG (2007) Neuro solutions documentation

  46. Liu H, Setiono R (1998) Incremental feature selection. Appl Intell 9(3):217–230

    Article  Google Scholar 

  47. Liu S, Huang J, Sung J, Lee C (2002) Detection of cracks using neural networks and computational mechanics. Comput Methods Appl Mech Eng 191(25–26):2831

    Article  MATH  Google Scholar 

  48. Majumder M, Roy P, Mazumdar A (2007) Optimization of the water use in the river Damodar in West Bengal in India: an integrated multi-reservoir system with the help of artificial neural network. Eng Comput Archit 1(2)

  49. Mandal S, Saha D, Banerjee T (2005) A neural network based prediction model for flood in a disaster management system with sensor networks. In: Proceedings of 2005 international conference on intelligent sensing and information processing, pp 78–82

    Chapter  Google Scholar 

  50. Mandic D, Chambers J (2001) Recurrent neural networks for prediction: learning algorithms, architectures and stability. Wiley, New York

    Book  Google Scholar 

  51. Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans Neural Netw 5(1):39–53

    Article  Google Scholar 

  52. Matsuoka K (1992) Noise injection into inputs in back-propagation learning. IEEE Trans Syst Man Cybern 22(3):436–440

    Article  Google Scholar 

  53. Mrazova I, Wang D (2007) Improved generalization of neural classifiers with enforced internal representation. Neurocomputing 70(16-18):2940–2952

    Article  Google Scholar 

  54. Ośullivan D, Dooley L (2010) Collaborative innovation for the management of information technology resources. Int J Hum Cap Inf Technol Prof 1(1):16–30

    Article  Google Scholar 

  55. Park J, Sandberg I (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  56. Priddy K, Keller P (2005) Artificial neural networks: an introduction. SPIE Press, Bellingham

    Google Scholar 

  57. Principe J, Euliano N, Lefebvre W (1999) Neural and adaptive systems: fundamentals through simulations with CD-ROM. Wiley, New York

    Google Scholar 

  58. Pujol J, Poli R (1998) Evolving the topology and the weights of neural networks using a dual representation. Appl Intell 8:73–84

    Article  Google Scholar 

  59. Rissanen J (1978) Modeling by shortest data description. Automatica 14:445–471

    Article  Google Scholar 

  60. Roy N, Potter W, Landau D (2004) Designing polymer blends using neural networks genetic algorithms, and Markov chains. Appl Intell 20:215–229

    Article  MATH  Google Scholar 

  61. Sokolova M, Rasras R, Skopin D (2006) The artificial neural network based approach for mortality structure analysis. Am J Appl Sci 3(2):1698–1702

    Article  Google Scholar 

  62. Son J, Lee D, Kim I, Choi S (2004) A study on genetic algorithm to select architecture of a optimal neural network in the hot rolling process. J Mater Process Technol 153–154, 643–648. Proceedings of the international conference in advances in materials and processing technologies

    Article  Google Scholar 

  63. Songwu L, Member S, Basar T (1998) Robust nonlinear system identification using neural network models. IEEE Trans Neural Netw 9:407

    Article  Google Scholar 

  64. Swingler K (1996) Applying neural networks. A practical guide. Academic Press, San Diego

    Google Scholar 

  65. Tang B, Hsieh W, Monahan A, Tangang F (2000) Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial pacific sea surface temperatures. J Climate 13:287–293

    Article  Google Scholar 

  66. Tarassenko L (1998) A guide to neural computing applications. Arnol/NCAF

  67. Ueda N (2000) Optimal linear combination of neural networks for improving classification performance. IEEE Trans Pattern Anal Mach Intell 22(2):207–215

    Article  MathSciNet  Google Scholar 

  68. Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin

    MATH  Google Scholar 

  69. Waszczyszyn Z, Ziemianski L (2001) Neural networks in mechanics of structures and materials—new results and prospects of applications. Comput Struct 79(16):2261–2276

    Article  Google Scholar 

  70. West D (2000) Neural network credit scoring models. Comput Oper Res 27(11–12):1131–1152

    Article  MATH  Google Scholar 

  71. Xie C-L, Chang J-Y, Shi, X-C, Dai, J-M (2010) Fault diagnosis of nuclear power plant based on genetic-rbf neural network. Int J Comput Appl Technol 39(1–3), 159–165

    Article  Google Scholar 

  72. Zhang L, Subbarayan G (2002) An evaluation of back-propagation neural networks for the optimal design of structural systems: part i. Training procedures. Comput Methods Appl Mech Eng 191(14), 2873–2886

    Article  MATH  Google Scholar 

  73. Zukas J (1990) High velocity impact dynamics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Gonzalez-Carrasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Carrasco, I., Garcia-Crespo, A., Ruiz-Mezcua, B. et al. An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios. Appl Intell 36, 424–441 (2012). https://doi.org/10.1007/s10489-010-0269-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-010-0269-5

Keywords

Navigation