Skip to main content
Log in

Cooperative driving: an ant colony system for autonomous intersection management

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Autonomous intersection management (AIM) is an innovative concept for directing vehicles through the intersections. AIM assumes that the vehicles negotiate the right-of-way. This assumption makes the problem of the intersection management significantly different from the usually studied ones such as the optimization of the cycle time, splits, and offsets. The main difficulty is to define a strategy that improves the traffic efficiency. Indeed, due to the fact that each vehicle is considered individually, AIM faces a combinatorial optimization problem that needs quick and efficient solutions for a real time application. This paper proposes a strategy that evacuates vehicles as soon as possible for each sequence of vehicle arrivals. The dynamic programming (DP) that gives the optimal solution is shown to be greedy. A combinatorial explosion is observed if the number of lanes rises. After evaluating the time complexity of the DP, the paper proposes an ant colony system (ACS) to solve the control problem for large number of vehicles and lanes. The complete investigation shows that the proposed ACS algorithm is robust and efficient. Experimental results obtained by the simulation of different traffic scenarios show that the AIM based on ACS outperforms the traditional traffic lights and other recent traffic control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakaguchi T, Uno A, Kato S, Tsugawa S (2000) Cooperative driving of automated vehicles with inter-vehicle communications. In: Proceedings of the IEEE intelligent vehicles symposium, pp 516–521

    Google Scholar 

  2. Uno A, Sakaguchi T, Tsugawa S (1999) A merging control algorithm based on inter-vehicle communication. In: Proceedings 1999 IEEE/IEEJ/JSAI international conference on intelligent transportation systems, pp 783–787

    Google Scholar 

  3. Tsugawa S (2002) Inter-vehicle communications and their applications to intelligent vehicles: an overview. In: IEEE intelligent vehicle symposium 2002, vol 2, pp 564–569

    Google Scholar 

  4. Gehring O, Fritz H (1997) Practical results of a longitudinal control concept for truck platooning with vehicle to vehicle communication. In: IEEE conference on intelligent transportation system 1997, pp 117–122

    Chapter  Google Scholar 

  5. Shladover SE, Desoer CA, Hedrick JK, Tomizuka M, Walrand J, Zhang WB, McMahon DH, Peng H, Sheikholeslam S, McKeown N (1991) Automated vehicle control developments in the PATH program. IEEE Trans Veh Technol 40(1):114–130

    Article  Google Scholar 

  6. Arora S, Raina AK, Mittal AK (2000) Collision avoidance among AGVs at junctions. In: Proceedings of the IEEE intelligent vehicles symposium 2000, pp 585–589

    Google Scholar 

  7. Li L, Fei-Yue W (2006) Cooperative driving at blind crossings using intervehicle communication. IEEE Trans Veh Technol 55(6):1712–1724

    Article  Google Scholar 

  8. Fang FC, Elefteriadou L (2006) Development of an optimization methodology for adaptive traffic signal control at diamond interchanges. J Transp Eng 132(8):629–637

    Article  Google Scholar 

  9. Gradinescu V, Gorgorin C, Diaconescu R, Cristea V, Iftode L (2007) Adaptive traffic lights using car-to-car communication. In: IEEE 65th vehicular technology conference, 2007, Spring, pp 21–25

    Chapter  Google Scholar 

  10. Wunderlich R, Cuibi L, Elhanany I, Urbanik T (2008) A novel signal-scheduling algorithm with quality-of-service provisioning for an isolated intersection. IEEE Trans Intell Transp Syst 9(3):536–547

    Article  Google Scholar 

  11. Dresner K, Stone P (2006) Traffic intersections of the future. In: The twenty-first national conference on artificial intelligence. NECTARTrack (AAAI 06), pp 1593–1596

    Google Scholar 

  12. Neuendorf N, Bruns T (2004) The vehicle platoon controller in the decentralised, autonomous intersection management of vehicles. In: Proceedings of the IEEE international conference on mechatronics 2004, pp 375–380

    Chapter  Google Scholar 

  13. Naumann R, Rasche R, Tacken J, Tahedi C (1997) Validation and simulation of a decentralized intersection collision avoidance algorithm. In: IEEE conference on intelligent transportation system 1997, pp 818–823

    Chapter  Google Scholar 

  14. Lachner R (1997) Collision avoidance as a differential game: real-time approximation of optimal strategies using higher derivatives of the value function. In: IEEE international conference on systems, man and cybernetics 1997. Computational cybernetics and simulation, vol 3, pp 2308–2313

    Google Scholar 

  15. Hunt PB (1982) The SCOOT on-line traffic signal optimisatoin technique. Traffic Eng Control 23:190–192

    Google Scholar 

  16. Gartner N (1983) OPAC: a demand-responsive strategy for traffic signal control. Transp Res Rec 906:75–81

    Google Scholar 

  17. Farges JL, Henry JJ, Tufal J (1983) The PRODYN real-time traffic algorithm. In: The 4th IFAC symposium on transportation systems, pp 307–312

    Google Scholar 

  18. Dresner K, Stone P (2007) Learning policy selection for autonomous intersection management. In: The AAMAS 2007 workshop on adaptive and learning agents (ALAg 2007), pp 34–39

    Google Scholar 

  19. Wu J, Abbas-Turki A, Correia A, El Moudni A (2007) Discrete intersection signal control. In: IEEE international conference on service operations and logistics and informatics 2007, pp 1–6

    Chapter  Google Scholar 

  20. Yan F, Dridi M, El Moudni A (2009) A branch and bound algorithm for new traffic signal control system of an isolated intersection. In: International conference on computers & industrial engineering 2009, pp 999–1004

    Chapter  Google Scholar 

  21. Dresner K, Stone P (2004) Multiagent traffic management: a reservation-based intersection control mechanism. In: Proceedings of the third international joint conference on autonomous agents and multiagent systems 2004, pp 530–537

    Google Scholar 

  22. Quinlan M, Tsz-Chiu A, Zhu J, Stiurca N, Stone P (2010) Bringing simulation to life: a mixed reality autonomous intersection. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) 2010, pp 6083–6088

    Chapter  Google Scholar 

  23. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  24. Grünewald M, Rust C, Witkowski U (2006) Using mini robots for prototyping intersection management of vehicles. In: The 3rd international symposium on autonomous minirobots for research and edutainment (AMIRE 2005), pp 287–292

    Chapter  Google Scholar 

  25. FHWA (2005) Traffic control systems handbook. Dunn engineering asociates and siemens intelligent transportation systems

  26. NHTSA (2005) Vehicle safety communications project task 3 final report—identify intelligent vehicle safety applications enabled by DSRC. US Department of Transportation: National Highway Traffic Safety Administration, Washington, DC

  27. Kutz M (2004) Handbook of transportation engineering. McGraw-Hill, New York

    Google Scholar 

  28. Chen X, Li L, Zhang Y (2010) A Markov model for headway/spacing distribution of road traffic. IEEE Trans Intell Transp Syst 11(4):773–785

    Article  Google Scholar 

  29. Bertolazzi E, Biral F, Da Lio M, Saroldi A, Tango F (2009) Supporting drivers in keeping safe speed and safe distance: the SASPENCE subproject within the European framework programme 6 integrating project PReVENT. IEEE Trans Intell Transp Syst 11(3):525–538

    Article  Google Scholar 

  30. Cohen S (1993) Ingénierie du trafic routier. Eléments de théorie du trafic et applications. Seconde edn. Presses de l’Ecole National des Ponts et Chaussées

  31. Diakaki P, Kotsialos D, Wang Y (2003) Review of road traffic control strategies. Proc IEEE 91(12):2041–2042

    Article  Google Scholar 

  32. Wu J, Abbas-Turki A, El Moudni A (2009) Intersection traffic control by a novel scheduling model. In: IEEE/INFORMS international conference on service operations, logistics and informatics 2009, pp 329–334

    Chapter  Google Scholar 

  33. Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  34. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278

    Article  MathSciNet  MATH  Google Scholar 

  35. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern, Part B, Cybern 26(1):29–41

    Article  Google Scholar 

  36. Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Tech Report 91-016. Laboratorio di Calcolatori, Dipartimento di Elettronica, Politecnico di Milano, Milano, Italy

  37. Maniezzo V (1999) Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J Comput 11(4):358–369

    Article  MathSciNet  MATH  Google Scholar 

  38. Maniezzo V, Colorni A (1999) The ant system applied to the quadratic assignment problem. IEEE Trans Knowl Data Eng 11(5):769–778

    Article  Google Scholar 

  39. Costa D, Hertz A (1997) Ants can colour graphs. J Oper Res Soc 48(3):295–305

    MATH  Google Scholar 

  40. Blum C, Sampels M (2004) An ant colony optimization algorithm for shop scheduling problems. J Math Model Algorithms 3(3):285–308

    Article  MathSciNet  MATH  Google Scholar 

  41. Gagné C, Price WL, Gravel M (2002) Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. J Oper Res Soc 53(8):895–906

    Article  MATH  Google Scholar 

  42. Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput 6(4):333–346

    Article  Google Scholar 

  43. Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl Intell 18(1):105–111

    Article  MATH  Google Scholar 

  44. Zhang N, Feng Z-R, Ke L-j (2010) Guidance-solution based ant colony optimization for satellite control resource scheduling problem. Appl Intell 1–9. doi:10.1007/s10489-010-0234-3

  45. Bullnheimer B, Hartl RF, Strauss C (1999) An improved ant system algorithm for the vehicle routing problem. Ann Oper Res 89(0):319–328

    Article  MathSciNet  MATH  Google Scholar 

  46. Lee C-Y, Lee Z-J, Lin S-W, Ying K-C (2010) An enhanced ant colony optimization (EACO) applied to capacitated vehicle routing problem. Appl Intell 32(1):88–95

    Article  Google Scholar 

  47. Reimann M, Doerner K, Hartl RF (2004) D-Ants: savings based ants divide and conquer the vehicle routing problem. Comput Oper Res 31(4):563–591

    Article  MATH  Google Scholar 

  48. Thomas HC, Charles EL, Ronald LR, Clifford S (2009) Introduction to algorithms, 3rd edn. MIT Press, Cambridge

    MATH  Google Scholar 

  49. May A (1990) Traffic flow fundamentals. Prentice Hall, Englewood Cliffs

    Google Scholar 

  50. Webster FV (1958) Road research technical paper. Road Research Laboratory, London, UK

  51. Mannering FL, Kilareski WP, Washburn SS (2004) Principles of highway engineering and traffic analysis, 3rd edn. Wiley, Hoboken

    Google Scholar 

  52. Barney GC (2003) Elevator traffic handbook: theory and practice. Taylor & Francis, London

    Google Scholar 

  53. Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res, Part B, Methodol 15(2):105–111

    Article  Google Scholar 

  54. Gipps PG (1986) Multsim: a model for simulating vehicular traffic on multi-lane arterial roads. Math Comput Simul 28(4):291–295

    Article  Google Scholar 

  55. Panwai S, Dia H (2005) Comparative evaluation of microscopic car-following behavior. IEEE Trans Intell Transp Syst 6(3):314–325

    Article  Google Scholar 

  56. Little JDC (1961) A proof for the queuing formula: L=λW. Oper Res 9(3):383–387

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wu.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 2.24 MB)

(MPG 3.65 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Abbas-Turki, A. & El Moudni, A. Cooperative driving: an ant colony system for autonomous intersection management. Appl Intell 37, 207–222 (2012). https://doi.org/10.1007/s10489-011-0322-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-011-0322-z

Keywords

Navigation