Skip to main content
Log in

A novel classification method for palmprint recognition based on reconstruction error and normalized distance

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose a fusion classification method based on reconstruction error and normalized distance for palmprint recognition. This method first obtains an approximate representation of the test sample by solving a linear system in which the test sample is assumed to be a linear combination of all the original training samples. Then it replaces the test sample by its approximate representation and decomposes the approximate representation as a weighted sum of all the training samples. The proposed method calculates the reconstruction error of the approximate representation from the weighted sum of the training samples from each class. The method also computes the normalized distance between the test sample and each class. Finally, the method integrates the reconstruction error and normalized distance between the test sample and a class to form the matching score and assigns the test sample into the class that has the smallest matching score. Experimental results on the palmprint databases demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Janev M, Pekar D, Jakovljevic N, Delic V (2010) Eigenvalues driven Gaussian selection in continuous speech recognition using HMMs with full covariance matrices. Appl Intell 33(2):107–116

    Article  Google Scholar 

  2. Jain AK, Feng J (2009) Latent palmprint matching. IEEE Trans Pattern Anal Mach Intell 31(6):1032–1047

    Article  Google Scholar 

  3. Mahmoud SA, Al-Khatib WG (2011) Recognition of Arabic (Indian) bank check digits using log-Gabor filters. Appl Intell 35(3):445–456

    Article  Google Scholar 

  4. Xu Y, Zhang D, Yang J-Y (2010) A feature extraction method for use with bimodal biometrics. Pattern Recognit 43(3):1106–1115

    Article  MATH  Google Scholar 

  5. Zia Uddin M, Lee JJ, Kim T-S (2010) Independent shape component-based human activity recognition via hidden Markov model. Appl Intell 33(2):193–206

    Article  Google Scholar 

  6. Zhang D, Kanhangad V, Luo N, Kumar A (2010) Robust palmprint verification using 2D and 3D features. Pattern Recognit 43:358–368

    Article  MATH  Google Scholar 

  7. Valova I, Milano G, Bowen K, Gueorguieva N (2011) Bridging the fuzzy, neural and evolutionary paradigms for automatic target recognition. Appl Intell 35(2):211–225

    Article  Google Scholar 

  8. Zhang D, Song F, Xu Y, Lang Z (2009) Advanced pattern recognition technologies with applications to biometrics. Medical Information Science Reference

  9. Guo Z, Zhang L, Zhang D (2010) Feature band selection for multispectral palmprint recognition. In: ICPR, pp 1136–1139

    Google Scholar 

  10. Dai Q, Bi N, Huang D, Zhang D, Li F (2004) M-band wavelets application to palmprint recognition based on texture features. In: ICIP, pp 893–896

    Google Scholar 

  11. Gui J, Jia W, Zhu L, Wang S-L, Huang D-S (2010) Locality preserving discriminant projections for face and palmprint recognition. Neurocomputing 73(13):2696–2707

    Article  Google Scholar 

  12. Feng G, Hu D, Li M, Zhou Z (2005) Palmprint recognition based on unsupervised subspace analysis. In: ICNC, vol 1, pp 675–678

    Google Scholar 

  13. Lu G, Zhang D, Wang K (2003) Palmprint recognition using eigenpalms features. Pattern Recognit Lett 24(9):1463–1467

    Article  MATH  Google Scholar 

  14. Ribaric S, Fratric I (2005) A biometric identification system based on eigenpalm and eigenfinger features. IEEE Trans Pattern Anal Mach Intell 27(11):1698–1709

    Article  Google Scholar 

  15. Cheung KH, Kong W-KA et al (2006) Does eigenpalm work? A system and evaluation perspective. In: ICPR, vol 4, pp 445–448

    Google Scholar 

  16. Sang H, Yuan W, Zhang Z (2009) Research of palmprint recognition based on 2DPCA. In: ISNN, vol 2, pp 831–838

    Google Scholar 

  17. Ekinci M, Aykut M (2008) Palmprint recognition by applying wavelet-based kernel PCA. J Comput Sci Technol 5(23):851–861

    Article  Google Scholar 

  18. Wang Y, Ruan Q (2006) Kernel fisher discriminant analysis for palmprint recognition. In: Proceedings of the 18th international conference on pattern recognition, pp 457–460

    Google Scholar 

  19. Wang M, Ruan Q (2006) Palmprint recognition based on two-dimensional methods. In: Proceedings of the 8th international conference on signal processing

    Google Scholar 

  20. Tao J, Jiang W, Gao Z, Chen S, Wang C (2006) Palmprint recognition based on 2-dimension PCA. In: ICICIC, vol 1, pp 326–330

    Google Scholar 

  21. Pan X, Ruan Q (2008) Palmprint recognition with improved two-dimensional locality preserving projections. Image Vis Comput 26(9):1261–1268

    Article  Google Scholar 

  22. Wu X, Zhang D, Wang K (2003) Fisherpalms based palmprint recognition. Pattern Recognit Lett 24(15):2829–2838

    Article  Google Scholar 

  23. Xu Y, Zhong A, Yang J, Zhang D (2011) Bimodal biometrics based on a representation and recognition approach. Opt Eng 50(3):037202

    Article  Google Scholar 

  24. Jing X-Y, Zhang D (2004) A face and palmprint recognition approach based on discriminant DCT feature extraction. IEEE Trans Syst Man Cybern, Part B, Cybern 34(6):2405–2415

    Article  Google Scholar 

  25. Du F, Yu P, Li H, Zhu L (2011) Palmprint recognition using Gabor feature-based bidirectional 2DLDA. Commun Comput Inf Sci 5(159):230–235

    Article  Google Scholar 

  26. Xu Y, Zhu Q, Zhang D, Yang J-Y (2011) Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 74:3946–3952

    Article  Google Scholar 

  27. Zhang L et al (2011) Sparse representation or collaborative representation: which helps face recognition? In: ICCV, pp 1–8

    Google Scholar 

  28. Shi Q, Eriksson A, Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In: CVPR, pp 553–560

    Chapter  Google Scholar 

  29. Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 9(21):1255–1262

    Google Scholar 

  30. Xu Y, Zuo W, Fan Z (2012) Supervised sparse presentation method with a heuristic strategy and face recognition experiments. Neurocomputing 79:125–131

    Article  Google Scholar 

  31. Xu Y, Zhu Q A simple and fast representation-based face recognition method. Neural Comput Appl. doi:10.1007/s00521-012-0833-5

  32. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  33. Lai Z, Wan M, Jin Z, Yang J (2011) Sparse two-dimensional local discriminant projections for feature extraction. Neurocomputing 74(4):629–637

    Article  Google Scholar 

  34. Xu Y, Zhu Q, Chen Y, Pan J-S (2012) An improvement to the nearest neighbor classifier and face recognition experiments. Int J Innov Comput Inf Control 8(12):1349–4198

    Google Scholar 

  35. Zhang D, Guo Z, Lu G, Zhang L, Zuo W (2010) An online system of multispectral palmprint verification. IEEE Trans Instrum Meas 59(2):480–490

    Article  Google Scholar 

  36. Rowe RK, Uludag UM et al (2007) A multispectral whole-hand biometric authentication system. In: Proc biometric symp, biometric consortium conf, Baltimore, MD, pp 1–6

    Google Scholar 

  37. Wang J-G, Yau W-Y, Suwandy A, Sung E (2008) Person recognition by fusing palmprint and palm vein images based on ‘Laplacianpalm’ representation. Pattern Recognit 41(5):1514–1527

    Article  MATH  Google Scholar 

  38. Kong AW-K, Zhang DD, Kamel MS (2009) A survey of palmprint recognition. Pattern Recognit 42(7):1408–1418

    Article  Google Scholar 

  39. Wu X, Wang K, Zhang D (2002) Line feature extraction and matching in palmprint. In: Proceeding of the second international conference on image and graphics, pp 583–590

    Chapter  Google Scholar 

  40. Kong AW-K, Zhang D (2004) Competitive coding scheme for palmprint verification. In: ICPR, vol 1, pp 520–523

    Google Scholar 

  41. Zuo W, Lin Z, Guo Z, Zhang D (2010) The multiscale competitive code via sparse representation for palmprint verification. In: CVPR, pp 2265–2272

    Google Scholar 

  42. Zhang D, Zuo W, Yue F (2012) A comparative study of palmprint recognition algorithms. ACM Comput Surv 44(1):2

    Article  Google Scholar 

  43. Chu R, Liao S, Han Y, Sun Z, Li SZ, Tan T (2007) Fusion of face and palmprint for personal identification based on ordinal features. In: CVPR, pp 17–22

    Google Scholar 

  44. Huang D, Jia W, Zhang D (2008) Palmprint verification based on principal lines. Pattern Recognit 41:1316–1328

    Article  Google Scholar 

  45. Jing X, Wong H (2006) Biometrics recognition based on fused gaborface and gaborpalm with dcv-rbf feature classification. Electron Lett 21(42):1205–1206

    Article  Google Scholar 

  46. Ekinci M, Aykut M (2007) Gabor-based kernel pca for palmprint recognition. Electron Lett 20(43):1077–1079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Pu, J., Huang, T. et al. A novel classification method for palmprint recognition based on reconstruction error and normalized distance. Appl Intell 39, 307–314 (2013). https://doi.org/10.1007/s10489-012-0414-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0414-4

Keywords

Navigation