Skip to main content
Log in

A memetic algorithm for the capacitated m-ring-star problem

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The Capacitated m-Ring-Star Problem (CmRSP) models a network topology design problem in the telecommunications industry. In this paper, we propose to solve this problem using a memetic algorithm that includes a crossover operation, a mutation operation, a local search involving three neighborhood operators, and a population selection strategy that maintains population diversity. Our approach generates the best known solutions for 131 out of 138 benchmark instances, improving on the previous best solutions for 24 of them, and exhibits more advantages on large benchmark instances when compared with the best existing approach. Additionally, all existing algorithms for this problem in literature assume that the underlying graph of the problem instance satisfies the triangle inequality rule; our approach does not require this assumption. We also generated a new set of 36 larger test instances based on a digital data service network price structure to serve as a new benchmark data set for future researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Algorithm 3

Similar content being viewed by others

References

  1. Baldacci R, Dell’Amico M (2010) Heuristic algorithms for the multi-depot ring-star problem. Eur J Oper Res 203(1):270–281

    Article  MATH  Google Scholar 

  2. Baldacci R, Dell’Amico M, Salazar González J (2007) The capacitated m-ring-star problem. Oper Res 55(6):1147–1162

    Article  MATH  MathSciNet  Google Scholar 

  3. Beasley JE, Nascimento EM (1996) The vehicle routing-allocation problem: a unifying framework. Top 4(1):65–86

    Article  MATH  MathSciNet  Google Scholar 

  4. Burkard R, Dell’Amico M, Martello S (2008) Assignment problems. Society for Industrial and Applied Mathematics, 3600 Market Street, 6th floor, Philadelphia, PA, USA (2008)

  5. Current JR, Schilling DA (1994) The median tour and maximal covering tour problems: formulations and heuristics. Eur J Oper Res 73(1):114–126

    Article  MATH  Google Scholar 

  6. Falkenauer E (1998) Genetic algorithms and grouping problems. Wiley, Chichester

    Google Scholar 

  7. Fallahi AE, Prins C, Wolfler Calvo R (2008) A memetic algorithm and a tabu search for the multi-compartment vehicle routing problem. Comput Oper Res 35(5):1725–1741

    Article  MATH  Google Scholar 

  8. Fischetti M, Salazar González JJ, Toth P (1997) A branch-and-cut algorithm for the symmetric generalized travelling salesman problem. Oper Res 45(3):378–394

    Article  MATH  MathSciNet  Google Scholar 

  9. Gillett BE, Miller LR (1974) A heuristic algorithm for the vehicle-dispatch problem. Oper Res 22(2):340–349

    Article  MATH  Google Scholar 

  10. Grötschel M, Monma CL, Stoer M (1995) Design of survivable networks. In: Handbooks in operations research and management science, vol 7. Elsevier, Amsterdam, pp 617–672

    Google Scholar 

  11. Hoshino EA, de Souza CC (2008) Column generation algorithms for the capacitated m-ring-star problem. In: Computing and combinatorics. Lecture notes in computer science, pp 631–641

    Chapter  Google Scholar 

  12. Hoshino EA, de Souza CC (2010) A branch-and-cut-and-price approach for the capacitated m-ring-star problem. Technical report IC-10-15, Institute of Computing, University of Campinas, Brazil

  13. Labbé M, Laporte G, Rodríguez Martín I, Salazar González JJ (2004) The ring star problem: polyhedral analysis and exact algorithm. Networks 43(3):177–189

    Article  MATH  MathSciNet  Google Scholar 

  14. Labbé M, Laporte G, Rodríguez Martín I, Salazar González JJ (2005) Locating median cycles in networks. Eur J Oper Res 160(2):457–470

    Article  MATH  Google Scholar 

  15. Labbé M, Rodríguez Martín I, Salazar-González JJ (2004) A branch-and-cut algorithm for the plant-cycle location problem. J Oper Res Soc 55(5):513–520

    Article  MATH  Google Scholar 

  16. Laguna M, Martí R (2003) Scatter search—methodology and implementations in C. Operations research/computer science interfaces series, vol 24. Kluwer Academic, Boston

    Google Scholar 

  17. Liefooghe A, Jourdan L, Talbi EG (2010) Metaheuristics and cooperative approaches for the bi-objective ring star problem. Comput Oper Res 37(6):1033–1044

    Article  MATH  MathSciNet  Google Scholar 

  18. Lü Z, Hao JK (2010) A memetic algorithm for graph coloring. Eur J Oper Res 203(1):241–250

    Article  MATH  Google Scholar 

  19. Mauttone A, Nesmachnow S, Olivera A, Robledo F (2007) A hybrid metaheuristic algorithm to solve the capacitated m-ring star problem. In: International network optimization conference

    Google Scholar 

  20. Mei Y, Tang K, Yao X (2009) A global repair operator for capacitated arc routing problem. IEEE Trans Syst Man Cybern, Part B, Cybern 39(3):723–734

    Article  Google Scholar 

  21. Nagy G, Salhi S (2007) Location-routing: Issues, models and methods. Eur J Oper Res 177(2):649–672

    Article  MATH  MathSciNet  Google Scholar 

  22. Naji-Azimi Z, Salari M, Toth P (2010) A heuristic procedure for the capacitated m-ring-star problem. Eur J Oper Res 207(3):1227–1234

    Article  MATH  MathSciNet  Google Scholar 

  23. Naji-Azimi Z, Salari M, Toth P (2012) An integer linear programming based heuristic for the capacitated m-ring-star problem. Eur J Oper Res 217(1):17–25

    Article  MATH  MathSciNet  Google Scholar 

  24. Neri F, Cotta C, Moscato P (2012) Handbook of memetic algorithms, studies in computational intelligence, vol 379. Springer, Berlin

    Book  Google Scholar 

  25. Ngueveu SU, Prins C, Wolfler Calvo R (2010) An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput Oper Res 37(11):1877–1885

    Article  MATH  MathSciNet  Google Scholar 

  26. Ombuki BM, Ventresca M (2004) Local search genetic algorithms for the job shop scheduling problem. Appl Intell 21(1):99–109

    Article  MATH  Google Scholar 

  27. Osiakwan CNK, Akl SG (1990) The maximum weight perfect matching problem for complete weighted graphs is in PC. In: Proceedings of the second IEEE symposium on parallel and distributed processing, pp 880–887

    Google Scholar 

  28. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384

    Article  MATH  Google Scholar 

  29. Resende M, Ribeiro C (2003) Greedy randomized adaptive search procedures. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic, Boston, pp 219–249

    Google Scholar 

  30. Revelle CS, Laporte G (1996) The plant location problem: new models and research prospects. Oper Res 44(6):864–874

    Article  MATH  Google Scholar 

  31. Soak SM, Lee SW (2012) A memetic algorithm for the quadratic multiple container packing problem. Appl Intell 36(1):119–135

    Article  Google Scholar 

  32. West DB (2001) Introduction to graph theory. Prentice Hall, Upper Saddle River

    Google Scholar 

  33. Wilke P, Gröbner M, Oster N (2002) A hybrid genetic algorithm for school timetabling. In: AI 2002: advances in artificial intelligence. Lecture notes in artificial intelligence, pp 455–464

    Chapter  Google Scholar 

  34. Xu J, Chiu SY, Glover F (1999) Optimizing a ring-based private line telecommunication network using tabu search. Manag Sci 45(3):330–345

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Fundamental Research Funds for the Central Universities, HUST (Grant No. 2012QN213) and National Natural Science Foundation of China (Grant No. 71201065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizhen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Qin, H. & Lim, A. A memetic algorithm for the capacitated m-ring-star problem. Appl Intell 40, 305–321 (2014). https://doi.org/10.1007/s10489-013-0460-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0460-6

Keywords

Navigation