Abstract
Suprasegmental (prosody) features of discourse provide a vehicle by which speakers reflect their mental purposes to listeners. Generating suitable prosody information is critical to expressing messages and improving the intelligibility and naturalness of synthetic speech. Generic prosody generators should provide information about pitch frequency (F 0) contours, energy levels, word durations, and inter-word pause durations for speech synthesizers. The present study used a recurrent neural network (RNN) for prosody generation. The inputs of this RNN were word-level and syllable-level linguistic features. To provide data efficiently for the RNN-based prosody generator in the training, validation, and test phases, automatic segmentation and labeling of phonemes were performed. The number of inputs to the RNN was reduced by employing a binary gravitational search algorithm (BGSA) for feature selection (FS). The proposed prosody generator provided 12 output prosodic parameters for the current syllable for representing pitch contour, log-energy contour, inter-syllable pause duration, duration of syllable, duration of the vowel in the syllable, and vowel onset time. Experimental results demonstrated the success of the RNN-based prosody generator in synthesizing the six prosodic elements with acceptable root mean square error (RMSE). By using a BGSA-based FS unit, a lighter neural model was achieved with a 53 % reduction in the number of weight connections, producing RMSEs with acceptable degradation over the no-FS unit prosody generator. The performance of the BGSA-based FS method was compared with a binary particle swarm optimization (BPSO) algorithm, and the BGSA showed slightly better results. A modified mean opinion score scale was used to evaluate the intelligibility and naturalness of synthesized speech using the proposed method.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Pell MD (2001) Influence of emotion and focus location on prosody in matched statements and questions. J Acoust Soc Am 109:1668–1680. doi:10.1121/1.1352088
van Zyl M, Hanekom JJ (2013) When “okay” is not okay: acoustic characteristics of single-word prosody conveying reluctance. J Acoust Soc Am 133:EL-13–EL-19. doi:10.1121/1.4769399
Schuller B, Steidl S, Batliner A, Burkhardt F, Devillers L, Müller C, Narayanan S (2013) Paralinguistics in speech and language: state-of-the-art and the challenge. Comput Speech Lang 27:4–39. doi:10.1016/j.csl.2012.02.005
Ward NG, Vega A, Baumann T (2012) Prosodic and temporal features for language modeling for dialog. Speech Commun 54:161–174. doi:10.1016/j.specom.2011.07.009
24617-2 ISO (2012) Language resource management-semantic annotation framework—part 2: dialogue acts. Switzerland
Dong Y, Zhou T, Dong CY, Wang HL (2010) A two-stage prosodic structure generation strategy for Mandarin text-to-speech systems. Acta Autom Sin 36:1569–1574. doi:10.1016/S1874-1029(09)60063-X
Ofuka E, McKeown JD, Waterman MG, Roach PJ (2000) Prosodic cues for rated politeness in Japanese speech. Speech Commun 32:199–217. doi:10.1016/S0167-6393(00)00009-1
Trouvain J, Schmidt S, Schröder M, Schmitz M, Barry WJ (2006) Modelling personality features by changing prosody in synthetic speech. In: Proc speech prosody, Dresden, Germany. http://scidok.sulb.uni-saarland.de/volltexte/2008/1490/pdf/trouvain_etal2006.pdf. Accessed 19 July 2013
Vinciarelli A, Pantic M, Bourlard H, Pentland A (2008) Social signal processing: state-of-the-art and future perspectives of an emerging domain. In: Proc ACM int conf multimedia, pp 1061–1070. doi:10.1145/1459359.1459573
van Santen JPH, Prud’hommeaux ET, Black LM (2009) Automated assessment of prosody production. Speech Commun 51:1082–1097. doi:10.1016/j.specom.2009.04.007
Chen L, Mao X, Wei P, Xue Y, Ishizuka M (2012) Mandarin emotion recognition combining acoustic and emotional point information. Appl Intell 37:602–612. doi:10.1007/s10489-012-0352-1
Zukerman I, Albrecht DW (2001) Predictive statistical models for user modeling. User Model User-Adapt Interact 11:5–18. doi:10.1023/A:1011175525451
Calle J, Castaño L, Castro E, Cuadra D (2013) Statistical user model supported by R-Tree structure. Appl Intell 39:545–563. doi:10.1007/s10489-013-0432-x
Aguert M, Laval V, Le Bigot L, Bernicot J (2010) Understanding expressive speech acts: the role of prosody and context in French-speaking 5- to 9-year-olds. J Speech Lang Hear Res 53:1629–1641. doi:10.1044/1092-4388
Nöth E, Batliner A, Kießling A, Kompe R, Niemann H (2000) Verbmobil: the use of prosody in the linguistic components of a speech understanding system. IEEE Trans Speech Audio Process 8:519–532. doi:10.1109/89.861370
Nöth E, Batliner A, Warnke V, Haas J, Boros M, Buckow J, Huber R, Gallwitz F, Nutt M, Niemann H (1999) On the use of prosody in automatic dialogue understanding. Speech Commun 36:45–62. doi:10.1016/S0167-6393(01)00025-5
Moubaiddin A, Obeid N (2009) Partial information basis for agent-based collaborative dialogue. Appl Intell 30:142–167. doi:10.1007/s10489-007-0108-5
Batliner A, Fischer K, Huber R, Spilker J, Nöth E (2003) How to find trouble in communication. Speech Commun 40:117–143. doi:10.1016/S0167-6393(02)00079-1
Griol D, Carbo J, Molina JM (2013) Bringing context-aware access to the web through spoken interaction. Appl Intell 38:620–640. doi:10.1007/s10489-012-0390-8
Batliner A, Nöth E, Buckow J, Huber R, Warnke V, Niemann H (2001) Whence and whither prosody in automatic speech understanding: a case study. In: Proc ISCA tutorial and research workshop speech recognition and understanding, pp 23–28
O’Shea K (2012) An approach to conversational agent design using semantic sentence similarity. Appl Intell 37:558–568. doi:10.1007/s10489-012-0349-9
Gnjatović M, Janev M, Delić V (2012) Focus tree: modeling attentional information in task-oriented human-machine interaction. Appl Intell 37:305–320. doi:10.1007/s10489-011-0329-5
Bernsen NO, Dybkjær H, Dybkjær L (1997) Elements of speech interaction. In: Proc spoken language dialogue and discourse workshop, topics in natural interactive systems, vol 1, pp 28–47
Allen J, Ferguson G, Stent A (2001) An architecture for more realistic conversational systems. In: Proc int conf intelligent user interfaces, pp 1–8. doi:10.1145/359784.359822
Lemon O, Cavedon L, Kelly B (2003) Managing dialogue interaction: a multi-layered approach. In: Proc SIGdial workshop discourse and dialogue, Sapporo, Japan. http://clair.eecs.umich.edu/aan/paper.php?paper_id=W03-2114. Accessed 20 July 2013
Sandler W, Meir I, Dachkovsky S, Padden C, Aronoff M (2011) The emergence of complexity in prosody and syntax. Lingua 121:2014–2033. doi:10.1016/j.lingua.2011.05.007
Chen CM, Lee HM, Hwang CW (2005) A hierarchical neural network document classifier with linguistic feature selection. Appl Intell 23:277–294. doi:10.1007/s10489-005-4613-0
Klatt DH (1987) Review of TTS conversion in English. J Acoust Soc Am 82:737–793
Bailly G (1989) Integration and rhythmic and syntactic constraints in a model of generation of French prosody. Speech Commun 8:137–146. doi:10.1016/0167-6393(89)90040-X
Mixdorff H, Fujisaki H (1995) A scheme for a model-based synthesis by rule of F 0 contours of German utterances. In: Proc eurospeech, pp 1823–1826
Frid J (2001) Prediction of intonation patterns of accented words in a corpus of read Swedish news through pitch contour stylization. In: Proc eurospeech, pp 915–918
El-Imam YA (2008) Synthesis of the intonation of neutrally spoken modern standard Arabic speech. Signal Process 88:2206–2221. doi:10.1016/j.sigpro.2008.03.013
Kaiki N, Mimura K, Sagisaka Y (1991) Statistical modeling of segmental duration and power control for Japanese. In: Proc eurospeech, pp 625–628
Fukada T, Komori Y, Aso T, Ohora Y (1994) A study of pitch pattern generation using HMM-based statistical information. In: Proc int conf spoken language processing, pp 723–726
Fujio S, Sagisaka Y, Higuchi N (1995) Stochastic modeling of pause insertion using context-free grammar. In: Proc int conf acoustics, speech, and signal processing, pp 604–607. doi:10.1109/ICASSP.1995.479670
Saito T, Sakamoto M (2001) Generating F 0 contours by statistical manipulation of natural F 0 shapes. In: Proc eurospeech, pp 1171–1174
Bassi A, Becerra Yoma N, Huenupan F, Inzunza J (2005) Tonal prosody estimation in Spanish using HMM with temporal restrictions. In: Proc int conf speech and computer, pp 691–694
Vicsi K, Szaszák G (2010) Using prosody to improve automatic speech recognition. Speech Commun 52:413–426. doi:10.1016/j.specom.2010.01.003
Scordilis MS, Gowdy GN (1989) Neural network-based generation of fundamental frequency contours. In: Proc int conf acoustics, speech, and signal processing, pp 219–222. doi:10.1109/ICASSP.1989.266404
Riedi M (1995) A neural-network-based model of segmental duration for speech synthesis. In: Proc eurospeech, pp 599–602
Chen SH, Hwang SH, Wang YR (1998) An RNN-based prosodic information synthesizer for Mandarin text-to-speech. IEEE Trans Speech Audio Process 6:226–239. doi:10.1109/89.668817
Hifny Y, Rashwan M (2002) Duration modeling for Arabic TTS synthesis. In: Proc int conf spoken language processing, pp 1773–1776
Sakurai A, Hirose K, Minematsu N (2003) Data-driven generation of F 0 contours using a superpositional model. Speech Commun 40:535–549. doi:10.1016/S0167-6393(02)00177-2
Sheikhan M (2003) Prosody generation in Farsi language. In: Proc int symp telecommunications, pp 250–253
Teixeira JP, Freitas D (2005) Use of phoneme dedicated artificial neural networks to predict segmental durations. In: Proc int conf speech and computer, pp 679–682
Sreenivasa Rao K, Yegnanarayana B (2007) Modeling durations of syllables using neural networks. Comput Speech Lang 21:282–295. doi:10.1016/j.csl.2006.06.003
Erdem Ç, Holzapfel M, Hoffmann R (2000) Natural F 0-contours with a new neural-network-hybrid approach. In: Proc interspeeech, pp 227–230
Chen K, Hasegawa-Johnson M, Cohen A (2004) An automatic prosody labeling system using ANN-based syntactic-prosodic model and GMM-based acoustic-prosodic model. In: Proc int conf acoustics, speech, and signal processing, pp 509–512. doi:10.1109/ICASSP.2004.1326034
Gheyas IA, Smith LS (2010) Feature subset selection in large dimensionality domains. Pattern Recognit 43:5–13. doi:10.1016/j.patcog.2009.06.009
Wang CW, You WH (2013) Boosting-SVM: effective learning with reduced data dimension. Appl Intell 39:465–474. doi:10.1007/s10489-013-0425-9
Vinh LT, Lee S, Park YT, d’Auriol BJ (2012) A novel feature selection method based on normalized mutual information. Appl Intell 37:100–120. doi:10.1007/s10489-011-0315-y
Sheikhan M, Pezhmanpour M, Moin MS (2012) Improved contourlet-based steganalysis using binary particle swarm optimization and radial basis neural networks. Neural Comput Appl 21:1717–1728. doi:10.1007/s00521-011-0729-9
Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. doi:10.1016/j.ins.2009.03.004
Wang MQ, Hirshberg J (1992) Automatic classification of intonational phrase boundaries. Comput Speech Lang 6:175–196. doi:10.1016/0885-2308(92)90025-Y
Campbell N (1993) Automatic detection of prosodic boundaries in speech. Speech Commun 13:343–354. doi:10.1016/0167-6393(93)90033-H
Wightman CW, Ostendorf M (1994) Automatic labeling of prosodic patterns. IEEE Trans Speech Audio Process 2:469–480. doi:10.1109/89.326607
Sreenivasa Rao K, Yegnanarayana B (2009) Intonation modeling for Indian languages. Comput Speech Lang 23:240–256. doi:10.1016/j.csl.2008.06.005
Lobanov B, Tsirulnik L, Zhadinets D, Piorkovska B, Rafalko J, Szpilevsky E (2005) Language-specific application of intonation contours in Russian and Polish multilingual TTS synthesis. In: Proc int conf speech and computer, pp 317–320
Yamashita Y, Ishida T (2001) Stochastic F 0 contour model based on the clustering of F 0 shapes of a syntactic unit. In: Proc eurospeech, vol 3, pp 533–537
Buhmann J, Marten JP, Macken L, Van Coile B (2002) Intonation modeling for the synthesis of structured documents. In: Proc int conf spoken language processing, pp 2089–2092
Ni J, Hirose K (2006) Quantitative and structural modeling of voice fundamental frequency contours of speech in Mandarin. Speech Commun 48:989–1008. doi:10.1016/j.specom.2006.01.002
Escudero-Mancebo D, Cardeñoso-Payo V (2007) Applying data mining techniques to corpus based prosodic modeling. Speech Commun 49:213–229. doi:10.1016/j.specom.2007.01.008
Sun Q, Hirose K, Minematsu N (2012) A method for generation of Mandarin F 0 contours based on tone nucleus model and superpositional model. Speech Commun 54:932–945. doi:10.1016/j.specom.2012.03.005
Sagisaka Y, Sato H (1984) Accentuation rules in Japanese TTS conversion. Rev Electr Commun Lab 32:188–199
Low PH, Vaseghi S (2002) Application of microprosody models in TTS synthesis. In: Proc int conf spoken language processing, pp 2413–2416
Smith CL (2002) Modeling durational variability in reading aloud a connected text. In: Proc int conf spoken language processing, pp 1769–1772
Eichner M, Wolff M, Hoffmann R (2002) Improved duration control for speech synthesis using a multigram language model. In: Proc int conf acoustics, speech, and signal processing, pp 417–420. doi:10.1109/ICASSP.2002.5743743
Werner S, Wolff M, Eichner M, Hoffmann R (2004) Modeling pronunciation variation for spontaneous speech synthesis. In: Proc int conf acoustics, speech, and signal processing, pp 673–676. doi:10.1109/ICASSP.2004.1326075
Lazaridis A, Ganchev T, Mporas I, Dermatas E, Fakotakis N (2012) Two-stage phone duration modelling with feature construction and feature vector extension for the needs of speech synthesis. Comput Speech Lang 26:274–292. doi:10.1016/j.csl.2012.01.009
Kabir MM, Shahjahan M, Murase K (2011) A new local search based hybrid genetic algorithm for feature selection. Neurocomputing 74:2914–2928. doi:10.1016/j.neucom.2011.03.034
Bae C, Yeh WC, Chung YY, Liu SL (2010) Feature selection with intelligent dynamic swarm and rough set. Expert Syst Appl 37:7026–7032. doi:10.1016/j.eswa.2010.03.016
Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 28:459–471. doi:10.1016/j.patrec.2006.09.003
Xiao Z, Ye SJ, Zhang B, Sun CX (2009) BP neural network with rough set for short term load forecasting. Expert Syst Appl 36:273–279. doi:10.1016/j.eswa.2007.09.031
Huang CL (2009) ACO-based hybrid classification system with feature subset selection and model parameters optimization. Neurocomputing 73:438–448. doi:10.1016/j.neucom.2009.07.014
Sheikhan M, Mohammadi N (2013) Time series prediction using PSO-optimized neural network and hybrid feature selection algorithm for IEEE load data. Neural Comput Appl 23:1185–1194. doi:10.1007/s00521-012-0980-8
Chen Y, Miao D, Wang R (2010) A rough set approach to feature selection based on ant colony optimization. Pattern Recognit Lett 31:226–233. doi:10.1016/j.patrec.2009.10.013
Sheikhan M, Sharifi Rad M (2013) Gravitational search algorithm-optimized neural misuse detector with selected features by fuzzy grids based association rules mining. Neural Comput Appl 23:2451–2463. doi:10.1007/s00521-012-1204-y
Mirjalili SA, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137. doi:10.1016/j.amc.2012.04.069
Sheikhan M, Jadidi Z (2012) Flow-based anomaly detection in high-speed links using modified GSA-optimized neural network. Neural Comput Appl. doi:10.1007/s00521-012-1263-0. Published online 15 November 2012
Bahrololoum A, Nezamabadi-pour H, Bahrololoum H, Saeed M (2012) A prototype classifier based on gravitational search algorithm. Appl Soft Comput 12:819–825. doi:10.1016/j.asoc.2011.10.008
Sheikhan M, Ahmadluei S (2013) An intelligent hybrid optimistic/pessimistic concurrency control algorithm for centralized database systems using modified GSA-optimized ART neural model. Neural Comput Appl 23:1815–1829. doi:10.1007/s00521-012-1147-3
Papa JP, Pagnin A, Schellini SA, Spadotto A, Guido RC, Ponti M, Chiachia G, Falcão AX (2011) Feature selection through gravitational search algorithm. In: Proc int conf acoustics, speech, and signal processing, pp 2052–2055. doi:10.1109/ICASSP.2011.5946916
Sheikhan M, Tebyani M, Lotfizad M (1996) Using symbolic and connectionist approaches to automate editing Persian sentences syntactically. In: Proc int conf intelligent and cognitive systems, pp 250–253
Sheikhan M, Tebyani M, Lotfizad M (1997) Continuous speech recognition and syntactic processing in Iranian Farsi language. Int J Speech Technol 1:135–141. doi:10.1007/BF02277194
Costa F, Frasconi P, Lombardo V, Soda G (2003) Towards incremental parsing of natural language using recursive neural networks. Appl Intell 19:9–25. doi:10.1023/A:1023860521975
Lu BL, Ma Q, Ichikawa M, Isahara H (2003) Efficient part-of-speech tagging with a min-max modular neural-network model. Appl Intell 19:65–81. doi:10.1023/A:1023868723792
Shi K, Li L (2013) High performance genetic algorithm based text clustering using parts of speech and outlier elimination. Appl Intell 38:511–519. doi:10.1007/s10489-012-0382-8
O’Brien D, Monaghan A (2001) Concatenative synthesis based on a harmonic model. IEEE Trans Speech Audio Process 9:11–20. doi:10.1109/89.890067
Sheikhan M, Nasirzadeh M, Daftarian A (2005) Design and implementation of a text to speech system for Farsi language. J Eng School-Ferdowsi Univ Mashhad 17(2):31–48 (in Farsi)
Childers DG (2000) Speech processing and synthesis toolboxes. Wiley, New York
Damper RI, Gunn SR, Gore MO (2000) Extracting phonetic knowledge from learning systems: perceptrons, support vector machines and linear discriminants. Appl Intell 12:43–62. doi:10.1023/A:1008359903796
Kocsor A, Tóth L (2004) Application of kernel-based feature space transformations and learning methods to phoneme classification. Appl Intell 21:129–142. doi:10.1023/B:APIN.0000033633.80480.3a
Childers DG, Hu TH (1994) Speech synthesis by glottal excited linear prediction. J Acoust Soc Am 96:2026–2036
Sethy A, Narayanan S (2002) Refined speech segmentation for concatenative speech synthesis. In: Proc int conf spoken language processing, pp 149–152
Samareh Y (1995) Phonetics of Farsi language. University Press Center, Tehran (in Farsi)
Halliday D, Resnick R, Walker J (2000) Extended, fundamentals of physics, 6th edn. Wiley, New York
Rashedi E, Nezamabadi-pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9:727–745. doi:10.1007/s11047-009-9175-3
Papa JP, Falcão AX, Suzuki CTN (2009) Supervised pattern classification based on optimum-path forest. Int J Imaging Syst Technol 19:120–131. doi:10.1002/ima.v19:2
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc int conf neural networks, vol 4, pp 1942–1948
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proc int conf systems, man and cybernetics, pp 4104–4108
Lee S, Soak S, Oh S, Pedrycz W, Jeon M (2008) Modified binary particle swarm optimization. Prog Nat Sci 18:1161–1166. doi:10.1016/j.pnsc.2008.03.018
Chen SH, Wang YR (1990) Vector quantization of pitch information in Mandarin speech. IEEE Trans Commun 38:1317–1320. doi:10.1109/26.61370
ITU-T Recommendation P.85 (1994) Telephone transmission quality subjective opinion tests. A method for subjective performance assessment of the quality of speech voice output devices
Viswanathan M, Viswanathan M (2005) Measuring speech quality for text-to-speech systems: development and assessment of a modified mean opinion score (MOS) scale. Comput Speech Lang 19:55–83. doi:10.1016/j.csl.2003.12.001
Papa JP, Suzuki CTN, Falcão AX (2009) LibOPF: a library for the design of optimum-path forest classifiers. Software version 2.0. http://www.ic.unicamp.br/~afalcao/libopf. Accessed 15 January 2013
van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971. doi:10.1016/j.ins.2005.02.003
Engelbrecht AP (2007) Computational intelligence—an introduction, 2nd edn. Wiley, New York, pp 289–357. Chap 16
Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Proc int conf evolutionary programming, pp 591–600
Sheikhan M, Movaghar B (2009) Exchange rate prediction using an evolutionary connectionist model. World Appl Sci J 7:8–16 (Special Issue of Computer & IT)
Adell J, Escudero D, Bonafonte A (2012) Production of filled pauses in concatenative speech synthesis based on the underlying fluent sentence. Speech Commun 54:459–476. doi:10.1016/j.specom.2011.10.010
Regenbogen C, Schneider DA, Gur RE, Schneider F, Habel U, Kellermann T (2012) Multimodal human communication—targeting facial expressions, speech content and prosody. NeuroImage 60:2346–2356. doi:10.1016/j.neuroimage.2012.02.043
Skantze G, Hjalmarsson A (2013) Towards incremental speech generation in conversational systems. Comput Speech Lang 27:243–262. doi:10.1016/j.csl.2012.05.004
del Valle-Agudo D, Calle-Gómez J, Cuadra-Fernández D, Rivero-Espinosa J (2012) Interpretation and generation incremental management in natural interaction systems. Interact Comput 24:78–90. doi:10.1016/j.intcom.2012.02.003
Gravano A, Hirschberg J (2011) Turn-taking cues in task-oriented dialogue. Comput Speech Lang 25:601–634. doi:10.1016/j.csl.2010.10.003
Kurtić E, Brown GJ, Wells B (2013) Resources for turn competition in overlapping talk. Speech Commun 55:721–743. doi:10.1016/j.specom.2012.10.002
Li H, Wu X, Li Z, Wu G (2013) A relation extraction method of Chinese named entities based on location and semantic features. Appl Intell 38:1–15. doi:10.1007/s10489-012-0353-0
Li ST, Tsai FC (2010) Constructing tree-based knowledge structures from text corpus. Appl Intell 33:67–78. doi:10.1007/s10489-010-0243-2
Park SB, Zhang BT, Kim YT (2003) Word sense disambiguation by learning decision trees from unlabeled data. Appl Intell 19:27–38. doi:10.1023/A:1023812606045
Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2013) Adaptive cooperative particle swarm optimizer. Appl Intell 39:397–420. doi:10.1007/s10489-012-0420-6
Acknowledgements
This work was supported by the Research Deputy of Islamic Azad University-South Tehran Branch as part of a research project entitled “Extraction of Suprasegmental Information of Farsi Speech Using Artificial Neural Network and Intelligent Feature Selection Algorithms” (Contract No. B/16/792). The author would like to thank the three anonymous referees for their invaluable comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sheikhan, M. Generation of suprasegmental information for speech using a recurrent neural network and binary gravitational search algorithm for feature selection. Appl Intell 40, 772–790 (2014). https://doi.org/10.1007/s10489-013-0505-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-013-0505-x