Skip to main content
Log in

Dynamic partition search algorithm for global numerical optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a novel evolutionary algorithm entitled Dynamic Partition Search Algorithm (DPSA) for global optimization problems with continuous variables. The DPSA is a population-based stochastic search algorithm in nature, which mainly consists of initialization process and evolution process. In the initialization process, the DPSA randomly generates an initial population of members from a specific search space and finds a leader. In the evolution process, the DPSA applies two groups to balance exploration ability and exploitation ability, in which one group is in charge of exploring new region via a dynamic partition strategy, and the other group relies on Cauchy distributions to exploit the region around the best member. Later, numerical experiments are conducted for 24 classical benchmark functions with 100, 1000 or even 10000 dimensions. And the performance of the proposed DPSA is compared with a state-of-the-art cooperative coevolving particle swarm optimization (CCPSO2), and two existing differential evolution (DE) algorithms. The experimental results show that DPSA has a better performance than the algorithms used for comparison, especially for high dimensional optimization problems. In addition, the numerical computational results also demonstrate that the DPSA has good scalability, and it is an effective evolutionary algorithm for solving large-scale global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sarker R, Mohammadian M, Yao X (2002) Evolutionary optimization. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  2. Gen M, Cheng R (2000) Genetic algorithms & engineering optimization. Wiley, New York

    Google Scholar 

  3. Park T, Ryu K (2010) A dual-population genetic algorithm for adaptive diversity control. IEEE Trans Evol Comput 14(6):865–884

    Article  Google Scholar 

  4. Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann, San Mateo

    Google Scholar 

  5. Valle Y, Venayagamoorthy G, Mohagheghi S, Hernandez J, Harley R (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195

    Article  Google Scholar 

  6. Storn R, Price K (1997) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  7. Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33:61–106

    Article  Google Scholar 

  8. Molina D, Lozano M, Garca-Martnez C, Herrera F (2010) Memetic Algorithms for Continuous Optimization Based on Local Search Chains. Evol Comput 18:27–63

    Article  Google Scholar 

  9. Caraffini F, Neri F, Iacca G, Mol A (2013) Parallel memetic structures. Inf Sci 227:60–82

    Article  MathSciNet  Google Scholar 

  10. Zhao R, Tang W (2008) Monkey algorithm for global numerical optimization. J Uncertain Syst 2(3):164–175

    MathSciNet  Google Scholar 

  11. Pavone M, Narzisi G, Nicosia G (2012) Clonal selection: an immunological algorithm for global optimization over continuous spaces. J Glob Optim 53(4):769–808

    Article  MATH  MathSciNet  Google Scholar 

  12. Eiben Á., Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  13. Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  14. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  15. Nickabadi A, Ebadzadeh M, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670

    Article  Google Scholar 

  16. Islam S, Das S, Ghosh S, Roy S, Suganthan P (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern B Cybern 42(2):482–500

    Article  Google Scholar 

  17. Park T, Ryu K (2011) A clustering-based differential evolution for global optimization. Appl Soft Comput 11(1):1363–1379

    Article  Google Scholar 

  18. Han M, Liao S, Chang J, Lin C (2013) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell 39(1):41–56

    Article  Google Scholar 

  19. Sun J, Zhang Q, Tsang E (2005) DE/EDA: a new evolutionary algorithm for global optimization. Inf Sci 169(3–4):249–262

    Article  MathSciNet  Google Scholar 

  20. Cai Z, Gong W, Ling C, Zhang H (2011) A clustering-based differential evolution for global optimization. Appl Soft Comput 11(1):1363–1379

    Article  Google Scholar 

  21. Iacca G, Neri F, Mininno E, Ong Y, Lim M (2012) Ockham’s razor in memetic computing: three stage optimal memetic exploration. Inf Sci 188:17–43

    Article  MathSciNet  Google Scholar 

  22. Caraffini F, Neri F, Passow B, Iacca G (2013) Re-sampled inheritance search: high performance despite the simplicity. Soft Comput 17(12):2235–2256

    Article  Google Scholar 

  23. Potter M, Jong K (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29

    Article  Google Scholar 

  24. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci 178:2985–2999

    Article  MATH  MathSciNet  Google Scholar 

  25. Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224

    Article  MathSciNet  Google Scholar 

  26. Hasanzadeh M, Meybodi M, Ebadzadeh M (2013) Adaptive cooperative particle swarm optimizer. Appl Intell 39(2):397–420

    Article  Google Scholar 

  27. Omidvar M, Li X, Mei Y, Yao X (2014) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evol Comput 18(3):378–393

    Article  Google Scholar 

  28. He S, Wu Q, Saunders J (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(4):973–990

    Article  Google Scholar 

  29. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  30. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  31. Li X, Yao X (2009) Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms. Proc IEEE CEC:1546–1553

  32. Ros R, Hansen N (2008) A simple modification in CMA-ES achieving linear time and space complexity. Proc PPSN X:296–305

  33. Hsieh S, Sun T, Liu C, Tsai S (2008) Solving large scale global optimization using improved particle swarm optimizer. Proc IEEE CEC:1777–1784

  34. Zhao S, Liang J, Suganthan P (2008) Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. Proc IEEE CEC:3845–3852

  35. Zhang J, Sanderson A (2009) JADE: Adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  36. Brest J, Greiner S, Bošković B, Mernik M, žumer V (2006) Selfadapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  37. Das S, Abraham A, Chakraborty U, Konar A (2009) Differential evolution using a neighborhood based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  38. Alam M, Islam M, Yao X, Murase K (2011) Recurring two-stage evolutionary programming: a novel approach for numeric optimization. IEEE Trans Syst Man Cybern B Cybern 41(5):1352–1365

    Article  Google Scholar 

  39. Lee C, Yao X (2004) Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Trans Evol Comput 8(1):1–13

    Article  Google Scholar 

  40. Yang Z, He J, Yao X (2007) Making a difference to differential evolution. In: Advances metaheuristics hard optimization. pp 397–414.

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers, whose valuable comments led to an improved version of the paper. This work was supported by the National Natural Science Foundation of China under Grant Nos. 71271151, 71301114 and 71471126, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20130032110015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Zhao, R. Dynamic partition search algorithm for global numerical optimization. Appl Intell 41, 1108–1126 (2014). https://doi.org/10.1007/s10489-014-0587-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-014-0587-0

Keywords