Abstract
Salient object detection aims to automatically localize a foreground object with respect to its background in an image. It plays a crucial role in a wide range of computer vision and multimedia applications. In this work, we propose an improved salient object detection method based on biogeography-based optimization, a relatively new bio-inspired metaheuristic algorithm that searches for the global optimum using a migration model. Our approach consists of two steps. In the first step, a set of local (multi-scale contrast), regional (center-surround histogram), and global (color spatial distribution) salient feature maps are extracted and normalized. In the second step, an optimal weight vector for combining these feature maps into one saliency map is determined using biogeography-based optimization and improved variants of this algorithm. As a result, a salient objects were identified and labeled as distinct from the image background. We implemented our method using three biogeography-based optimization variants, and compared our results for three popular databases against two other state-of-the-art approaches. The experimental results demonstrate that our method exhibits refined and consistent detection of salient objects.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-015-0739-x/MediaObjects/10489_2015_739_Fig10_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Borji A, Sihite DN, Itti L (2014) What/where to look next? Modeling top-down visual attention in complex interactive environments. IEEE Trans Syst Man Cyber A 44(5):523–538. doi:10.1109/TSMC.2013.2279715
Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9(4):188–194. doi:10.1016/j.tics.2005.02.
Pashler HE, Sutherland S (1998) The psychology of attention, vol 15. MIT press. MA, Cambridge
Frintrop S (2010) General object tracking with a component-based target descriptor. In: IEEE International Conference on Robotics and Automation, pp 4531–4536. doi:10.1109/ROBOT.2010.5509638
Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal 20(11):1254–1259. doi:10.1109/34.730558
Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation 1. Annu Rev Biomed Eng 2(1):315–337. doi:10.1146/annurev.bioeng.2.1.315
Talha AM, Junejo IN (2014) Dynamic scene understanding using temporal association rules. Image Vision Comput 32(12):1102–1116. doi:10.1016/j.imavis.2014.08.010
Zhang W, Wu QJ, Wang G, Yin H (2010) An adaptive computational model for salient object detection. IEEE Trans Multimedia 12(4):300–316. doi:10.1109/TMM.2010.2047607
Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 853–860. . doi:10.1109/CVPR.2012.6247758
Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2011) Learning to detect a salient object. IEEE Trans Pattern Anal 33(2):353–367. doi:10.1109/TPAMI.2010.70
Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713. doi:10.1109/TEVC.2008.919004
Song Y, Liu M, Wang Z (2010) Biogeography-based optimization for the traveling salesman problems. In: 3rd international joint conference on computational science and optimization, pp 295–299. doi:10.1109/CSO.2010.79
Boussaïd I, Chatterjee A, Siarry P, Ahmed-Nacer M (2012) Biogeography-based optimization for constrained optimization problems. Comput Oper Res 39:3293– 3304
Zheng Y-J, Ling H-F, Shi H-H, Chen H-S, Chen S-Y (2014) Emergency railway wagon scheduling by hybrid biogeography-based optimization. Comput Oper Res 43:1–8. doi:10.1016/j.cor.2013.09.002
Hadidi A (2015) A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl Energy 150:196–210. doi:10.1016/j.apenergy.2015.04.024
Zheng X-W, Lu D-J, Wang X-G, Liu H (2015) A cooperative coevolutionary biogeography-based optimizer. Appl Intell 43:95–111. doi:10.1007/s10489-014-0627-9
Zheng Y-J, Ling H-F, Chen S-Y, Xue J-Y (2015) A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes. IEEE Trans Fuzzy Syst 23:1070–1083. doi:10.1109/TFUZZ.2014.2337938
Zheng Y-J, Ling H- F, Xu X-L, Chen S-Y (2015) Emergency scheduling of engineering rescue tasks in disaster relief operations and its application in China. Int Trans Oper Res 22:503–518. doi:10.1111/itor.12148
Zhou X, Liu Y, Li B, Sun G (2015) Multiobjective biogeography based optimization algorithm with decomposition for commmunity detection in dynamic networks. Physica A 436:430–442. doi:10.1016/j.physa.2015.05.069
Zheng Y-J, Ling H-F, Wu X-B, Xue J-Y (2014) Localized biogeography-based optimization. Soft Comput 18(11):2323–2334. doi:10.1007/s00500-013-1209-1
Zheng Y-J, Ling H-F, Xue J-Y (2014) Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput Oper Res 50:115–127. doi:10.1016/j.cor.2014.04.013
Singh N, Arya R, Agrawal R (2014) A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recogn 47(4):1731–1739. doi:10.1016/j.patcog.2013.11.012
Cheng M-M, Zhang G-X, Mitra NJ, Huang X, Hu S-M (2011) Global contrast based salient region detection. IEEE Conf Comput Vis Pattern Recognit 409–416. doi:10.1109/CVPR.2011.5995344
Rahtu E, Heikkila J (2009) A simple and efficient saliency detector for background subtraction. In: IEEE 12th international conference on computer vision workshops, pp 1137–1144. doi:10.1109/ICCVW.2009.5457577
Harel J, Koch C, Perona P (2006) Graph-based visual saliency. Adv Neur In:545–552
Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. IEEE Conf Comput Vis Pattern Recognit 1–8. doi:10.1109/CVPR.2007.383267
Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. IEEE Conf Comput Vis Pattern Recognit 1597–1604. doi:10.1109/CVPR.2009.5206596
Ma Y-F, Zhang H-J (2003) Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the 11th ACM international conference on multimedia, pp 374–381. . doi:10.1145/957013.957094
Navalpakkam V, Itti L (2006) An integrated model of top-down and bottom-up attention for optimizing detection speed. In: IEEE computer society conference on computer vision and pattern recognition, pp 2049–2056. doi:10.1109/CVPR.2006.54
Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal 34(10):1915–1926. doi:10.1109/TPAMI.2011.272
Gao D, Vasconcelos N (2007) Bottom-up saliency is a discriminant process. In: IEEE 11th international conference on computer vision, pp 1–6. doi:10.1109/ICCV.2007.440885
Martin DR, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal Machine Intell 26:530–549. doi:10.1109/TPAMI.2004.1273918
Batra D, Kowdle N, Parikh D, Luo J, Chen T (2010) Icoseg: interactive co-segmentation with intelligent scribble guidance. IEEE Conf Comput Vis Pattern Recognit 1597–1604. doi:10.1109/CVPR.2010.5540080
Batra D, Kowdle N, Parikh D, Luo J, Chen T (2011) Interactively co-segmentating topically related images with intelligent scribble guidance. Int J Comput Vison 93(3):273–292. doi:10.1007/s11263-010-0415-x
Alpert S, Galun M, Basri R, Brandt A (2007) Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Conf Comput Vis Pattern Recognit 1–8. doi:10.1109/CVPR.2007.383017
Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient Object Detection: A Discriminative Regional Feature Integration Approach. IEEE Conf Comput Vis Pattern Recognit 2083–2090. doi:10.1109/CVPR.2013.271
Dhar S, Ordonez V, Berg TL (2011) High level describable attributes for predicting aesthetics and interestingness. IEEE Conf Comput Vis Pattern Recognit 1657–1664. doi:10.1109/CVPR.2011.599546
Zheng YJ (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11. doi:10.1016/j.cor.2014.10.008
Kashan AH (2015) A new metaheuristic for optimization: optics inspired optimization (OIO). Comput Oper Res 55:99–125. doi:10.1016/j.cor.2014.10.011
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Z., Wu, X. Salient object detection using biogeography-based optimization to combine features. Appl Intell 45, 1–17 (2016). https://doi.org/10.1007/s10489-015-0739-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-015-0739-x