Abstract
Mining frequent weighted itemsets (FWIs) from weighted-item transaction databases has recently received research interest. In real-world applications, sparse weighted-item transaction databases (SWITDs) are common. For example, supermarkets have many items, but each transaction has a small number of items. In this paper, we propose an interval word segment (IWS) structure to store and process tidsets for enhancing the effectiveness of mining FWIs from SWITDs. The IWS structure allows the intersection of tidsets between two itemsets to be performed very fast. A map array is proposed for storing a 1-bit index for words. From the map array, 1-bits are mapped to create the tidset of an itemset for faster calculation of the weighted support of itemsets. Experimental results for a number of SWITDs show that the method based on IWS structure outperforms existing methods.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10489-016-0799-6/MediaObjects/10489_2016_799_Fig17_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agrawal R, Srikant R (1994) Fast algorithms for minings association rules. In: Proceedings of the 20th international conference on very large data bases, pp 487–499
Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo IA (1996) Fast discovery of association rules. In: Advances in knowledge discovery and data mining (pp 307–328). American Association for Artificial Intelligence Menlo Park
Cai CH, Fu AC, Cheng CH, Kwong WW (1998) Mining association rules with weighted items. In: Proceedings of conference on IEEE intelligence database engineering and applications symposium, pp 68–77
Dong J, Han M (2007) Bittable-FI An efficient mining frequent itemsets algorithm. Knowl-Based Syst 20 (4):329–335
Gangin L, Unil Y, Keun HR (2014) Sliding window based weighted maximal frequent pattern mining over data streams. Expert Syst Appl 41(2):694–708
Grahne G, Zhu J (2005) Fast algorithms for frequent itemset mining using FP-trees. J IEEE Trans Knowl Data Eng:1347–1362
Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of conference on ACM SIGMOD management of data, pp 1–12
Lan CG, Hong PT, Lee YH, Lin CW (2015) Tightening upper bounds for mining weighted frequent itemsets. Intelligent Data Analysis 19(2):413–429
Lan CG, Hong PT, Lee YH (2014) An efficient approach for finding weighted sequential patterns from sequence databases. Appl Intell 41(2):439–452
Lan CG, Hong TP, Lee YH, Wang LS, Tsai WC (2013) Enhancing the efficiency in mining weighted frequent itemsets. In: Proceedings of IEEE international conference on system, man, cybernetics, pp 1104–1108
Le B, Nguyen H, Vo B (2010) Efficient algorithms for mining frequent weighted itemsets from weighted items databases. In: Proceedings of the International Conference on Computing and Communication Technologies, pp 1–6
Louie E, Lin T (2000) Finding association rules using fast bit computation: machine-oriented modeling. Foundations of Intelligent System International Symposium 1932:497–505
Nguyen H, Vo B, Nguyen MH, Hong TP (2015) MBIs:an efficient method for mining frequent weighted utility itemsets from quantitative databases. Journal of Computer Science and Cybernetics 31(1):17–30
Ramkumar GD, Ranka S, Tsur S (1998) Weighted association rules: model and algorithm. In: Proceedings of Fourth ACM Int’l Conference on Knowledge Discovery and Data Mining, pp 1–13
Song W, Yang B, Xu Z (2008) Index-bittableFI: an improve algorithm for mining frequent itemsets. Knowl-Based Syst 21(6):507–513
Tao F, Murtagh F, Farid M (2003) Weighted association rules mining using weighted support and signifocance framework. In: Proceedings of Conference on ACM SIGKDD, pp 661–666
Unil Y, Eunchul Y (2014) An efficient approach for mining weighted approximate closed frequent patterns considering noise constraints. Int J Uncertainty Fuzziness Knowledge Based Syst 22(6):879–912
Unil Y, Gangin L, Keun HR (2014) Mining maximal frequent patterns by considering weight conditions over data streams. Knowl-Based Syst 55:49–65
Unil Y, Gwangbum P, Eunchul (2015) Efficient mining of robust closed weighted sequential patterns without information loss. Int J Artif Intell Tools 24(1):1–28
Vo B, Le B (2009) Fast algorithm for mining generalized association rules. International Journal of Database and Application 2(3):1–12
Vo B, Coenen F, Le B (2013) A new method for mining frequent weighted itemsets base on WIT-trees. Expert Syst Appl 40(4):1256–1264
Vo B, Hong TP, Le B (2012) DBV-Miner: a dynamic bit - vector approach for fast mining frequent closed itemsets. Expert Syst Appl 39(8):7196–7206
Vo B, Tran NY, Ngo DH (2013) Mining frequent weighted closed itemsets. In: Advanced Computational Methods for Knowledge Engineering. Springer International Publishing, pp 379–390
Wang W, Yang J, Yu P (2000) Efficient mining of weighted association rules (WAR). In: Proceedings of the conference on ACM SIGKDD knowledge discovery and data mining, pp 270–274
Xiaobing L, Kun Z, Witold P (2012) An improved association rules mining method. Expert Syst Appl 39:1362–1374
Zaki M (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390
Zaki MJ, Gouda K (2003) Fast vertical mining using Diffset, pp 327–335
Acknowledgments
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.05-2015.10.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, H., Vo, B., Nguyen, M. et al. An efficient algorithm for mining frequent weighted itemsets using interval word segments. Appl Intell 45, 1008–1020 (2016). https://doi.org/10.1007/s10489-016-0799-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-016-0799-6