Skip to main content
Log in

A hierarchical selective ensemble randomized neural network hybridized with heuristic feature selection for estimation of sea-ice thickness

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, a hybrid intelligent system is developed to estimate sea-ice thickness along the Labrador coast of Canada. The developed intelligent system consists of two main parts. The first part is a heuristic feature selection algorithm used for processing a database to select the most effective features. The second part is a hierarchical selective ensemble randomized neural network (HSE-RNN) that is used to create a nonlinear map between the selected features and sea-ice thickness. The required data for processing have been collected from two sensors, i.e. moderate resolution imaging spectro-radiometer (MODIS), and advanced microwave scanning radiometer-earth (AMSR-E) observing system. To evaluate the computational advantages of the proposed intelligent framework, it is given brightness temperatures data captured at two different frequencies (low frequency, 6.9GHz, and high frequency, 36.5GHz) in addition to both atmospheric and oceanic variables from forecasting models. The obtained results demonstrate the computational power of the developed intelligent algorithm for the estimation of sea-ice thickness along the Labrador coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aksenov YP, Ekaterina E, Yool A, Nurser AJ, George W, Timothy D, Bertino L, Bergh J (2016) On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Marine Policy

  2. Aslanargun A, Mammadov M, Yazici B (2007) Comparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecasting. J Stat Comput Simul 77(1):29–53

    Article  MathSciNet  MATH  Google Scholar 

  3. Belchansky GI, Douglas DC, Platonov NG (2008) Fluctuating Arctic sea ice thickness changes estimated by an in situ learned and empirically forced neural network model. J Clim 21(4):716–729

    Article  Google Scholar 

  4. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Compl Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  5. Burger M, Neubauer A (2003) Analysis of Tikhonov regularization for function approximation by neural networks. Neural Netw 16(1):79–90

    Article  Google Scholar 

  6. Caya A, Buehner M, Carrieres T (2010) Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice-ocean model. J Atmos Ocean Technol 27(2):353–369

    Article  Google Scholar 

  7. Çelebi M (2009) A new approach for the genetic algorithm. J Stat Comput Simul 79(3):275–297

    Article  MathSciNet  MATH  Google Scholar 

  8. Chuang L, Hsiao CJ, Yang CH (2011) Chaotic particle swarm optimization for data clustering. Expert Syst Appl 38(12):14555–14563

    Article  Google Scholar 

  9. Côté J, Gravel S, Methot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB Global Environmental Multiscale (GEM) Model. Part 1: Design considerations and formulation. Mon Wea Rev 126:1373–1395

    Article  Google Scholar 

  10. Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numerical optimisation. Appl Soft Comput 27:99–126

    Article  Google Scholar 

  11. Erdogan BE (2013) Prediction of bankruptcy using support vector machines: an application to bank bankruptcy. J Stat Comput Simul 83(8):1543–1555

    Article  MathSciNet  Google Scholar 

  12. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  13. Hall D, Key JR, Casey KA, Riggs GA, Cavalieri DJ (2004) Sea ice surface temperature product from MODIS. IEEE Trans Geosci Remote Sens 42(5):1076–1087

    Article  Google Scholar 

  14. Hall DK, Riggs GA, Salomonson VV (2007) MODIS/Terra sea ice extent 5-min L2 swath 1km V005. National Snow and Ice Data Center Boulder, CO, USA

    Google Scholar 

  15. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer

  16. Haverkamp D, Soh LK, Tsatsoulis C (1995) A comprehensive, automated approach to determining sea ice thickness from SAR data. IEEE Trans Geosc Remote Sens 33(1):46–57

    Article  Google Scholar 

  17. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257

    Article  Google Scholar 

  18. Hsieh WW (2009) Machine learning methods in the environmental sciences. Cambridge University Press

  19. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  20. Iwamoto K, Ohshima KI, Tamura T, Nihashi S (2013) Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea. Int J Remote Sens 34(2):468–489

    Article  Google Scholar 

  21. Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W (2012) Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models. J Geophys Res: Oceans (1978–2012) 117(C8)

  22. Kaleschke L, Tian-Kunze X, Maab N, Makynen M, Matthias D (2012) Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. J Geophys Res:39. doi:10.1029/2012GL050916

  23. Kıran MS, Fındık O (2015) A directed artificial bee colony algorithm. Appl Soft Comput 26:454–462

    Article  Google Scholar 

  24. Lin H, Yang L (2012) A hybrid neural network model for sea ice thickness forecasting. IEEE

  25. Lowe D (1989) Adaptive radial basis function nonlinearities, and the problem of generalisation. Pages 171–175 of: Artificial Neural Networks, 1989., First IEE International Conference on (Conference Publication No. 313). IET

  26. Mozaffari A, Azad NL (2014) Optimally pruned extreme learning machine with ensemble of regularization techniques and negative correlation penalty applied to automotive engine coldstart hydrocarbon emission identification. Neurocomputing 131:143–156

    Article  Google Scholar 

  27. Mozaffari A, Behzadipour S (2015) A modular extreme learning machine with linguistic interpreter and accelerated chaotic distributor for evaluating the safety of robot maneuvers in laparoscopic surgery. Neurocomputing 151:913–932

    Article  Google Scholar 

  28. Mozaffari A, Azad NL, Emami M, Fathi A (2015) Mixed continuous/binary quantum-inspired learning system with non-negative least square optimisation for automated design of regularised ensemble extreme learning machines. Journal of Experimental & Theoretical Artificial Intelligence, pp 1–26

  29. Nihashi S, Ohshima KI, Tamura T, Fukamachi Y, Saitoh S (2009) Thickness and production of sea ice in the Okhotsk Sea coastal polynyas from AMSR-e. J Geophys Res: Oceans (1978–2012) 114(C10)

  30. Pao YH, Park GH, Sobajic DJ (1994) Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6(2):163–180

    Article  Google Scholar 

  31. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

  32. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  33. Schmidt WF, Kraaijveld MA, Duin RPW (1992) Feedforward neural networks with random weights. Pages 1–4 of: Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, 11th IAPR International Conference on Proceedings. IEEE

  34. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophys Res: Oceans (1978–2012) 116(C8)

  35. Scott KA, Buehner M, Caya A, Carrieres T (2012) Direct assimilation of AMSR-E brightness temperatures for estimating sea ice concentration. Mon Weather Rev 140(3):997–1013

    Article  Google Scholar 

  36. Scott KA, Buehner M, Carrieres T (2014) An Assessment of Sea-Ice Thickness Along the Labrador Coast From AMSR-E and MODIS Data for Operational Data Assimilation. IEEE Trans Geosci Remote Sens 52(5):2726–2737

    Article  Google Scholar 

  37. Soh LK, Tsatsoulis C, Gineris D, Bertoia C (2004) ARKTOS: An intelligent system for SAR sea ice image classification. IEEE Trans Geosci Remote Sens 42(1):229–248

    Article  Google Scholar 

  38. Stark JD, Ridley J, Martin M, Hines A (2008) Sea ice concentration and motion assimilation in a sea ice- ocean model. J Geophys Res: Oceans (1978–2012) 113(C5)

  39. Stroeve JC, Markus T, Maslanik JA, Cavalieri DJ, Gasiewski AJ, Heinrichs JF, Holmgren J, Perovich DK, Sturm M (2006) Impact of surface roughness on AMSR-E sea ice products. IEEE Transactions on Geoscience and Remote Sensing 44(11):3103–3117

    Article  Google Scholar 

  40. Wang X, Key J, Liu Y (2010) A thermodynamic model for estimating sea and lake ice thickness with optical satellite data. J Geophys Res: Oceans (1978–2012) 115(C12)

  41. Yang Q, Losa SN, Losch M, Tian-Kunze X, Nerger L, Liu J, Kaleschke L, Zhang Z (2014) Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J Geophys Res 110:6682–6692

    Google Scholar 

  42. Yu Y, Lindsay RW (2003) Comparison of thin ice thickness distributions derived from RADARSAT Geophysical Processor System and advanced very high resolution radiometer data sets. J Geophys Res: Oceans (1978–2012) 108(C12)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoja’eddin Chenouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, A., Scott, K.A., Azad, N.L. et al. A hierarchical selective ensemble randomized neural network hybridized with heuristic feature selection for estimation of sea-ice thickness. Appl Intell 46, 16–33 (2017). https://doi.org/10.1007/s10489-016-0815-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0815-x

Keywords

Navigation