Skip to main content
Log in

Modified swarm intelligence based techniques for the knapsack problem

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Swarm intelligence based algorithms have become an emerging field of research in recent times. Among them, two recently developed metaheuristics, cuckoo search algorithm (CSA) and firefly algorithm (FA) are found to be very efficient in solving different complex problems. CSA and FA are usually applied to solve the continuous optimisation problems. In this paper, an attempt has been made to utilise the merits of these algorithms to solve combinatorial problems, particularly 01 knapsack problem (KP) and multidimensional knapsack problem (MKP). In the improved version of CSA, a balanced combination of local random walk and the global explorative random walk is utilised along with the repair operator; whereas in the modified version of FA, the variable distance move with the repair operator of the local search and opposition-based learning mechanism is applied. Experiments are carried out with a large number of benchmark problem instances to validate our idea and demonstrate the efficiency of the proposed algorithms. Several statistical tests with recently developed algorithms from the literature present the superiority of these proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Knapsack problem is a maximization problem and decision variable x j can take two values either zero or one.

References

  1. Abraham A, Guo H, Liu H (2006) Swarm intelligence: foundations,perspectives and optimization. Springer

  2. Agrawal S, Panda R (2012) An efficient algorithm for gray level image enhancement using cuckoo search. In: Swarm, evolutionary, and memetic computing. Springer, pp 82–89

  3. Alsmadi MK (2014) A hybrid firefly algorithm with fuzzy-c mean algorithm for mri brain segmentation. Am J Appl Sci 11(9):1676–1691

    Article  Google Scholar 

  4. Arntzen H, Hvattum LM, Lokketangen A (2006) Adaptive memory search for multidemand multidimensional knapsack problems. Comput Oper Res 33(9):2508–2525

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal JC, Deep K (2012) A modified binary particle swarm optimization for knapsack problems. Applied Mathematics and Computation 218:11,042–11,061

    Article  MathSciNet  MATH  Google Scholar 

  6. Baykasoglu A, Ozsoydan FB (2014) An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst Appl 41:3712–3725

    Article  Google Scholar 

  7. Beasley JE (1990) Or-library: distributing test problems by electronic mail. Journal of Operational Research Society 41(11):1069–1072

    Article  Google Scholar 

  8. Bhattacharjee KK, Sarmah SP (2014) Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl Soft Comput 19:252–263

    Article  Google Scholar 

  9. Bhattacharjee KK, Sarmah SP (2015) A binary cuckoo search algorithm for knapsack problems. IEEE, Dubai

    Book  Google Scholar 

  10. Bhattacharjee KK, Sarmah SP (2015) A binary firefly algorithm for knapsack problems. In: IEEE international conference on industrial engineering and engineering management. IEEE, Singapore

  11. Bonabeau E, Meyer C (2001) Swarm intelligence: a whole new way to think about business. Harv Bus Rev 79(5):106–115

    Google Scholar 

  12. Chandrasekaran K, Simon S (2012) Network and realiability constrained unit commitment problem using binary real coded firefly algorithm. Int J Electr Power Energy Syst 43(1):921–932

    Article  Google Scholar 

  13. Chandrasekaran K, Simon SP (2012) Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evol Comput 5:1–16

    Article  Google Scholar 

  14. Chih M, Lin CJ, Chern MS, Ou TY (2014) Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem. Appl Math Model 38:1338–1350

    Article  MathSciNet  Google Scholar 

  15. Chu PC, Beasley JE (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1):63–86

    Article  MATH  Google Scholar 

  16. Chuang LY, Yang CH, Li JC (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11:239–248

    Article  Google Scholar 

  17. Civicioglu P, Besdok E (2013) A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Article  Google Scholar 

  18. Durgun I, Yildiz AR (2012) Structural design optimization of vehicle components using cuckoo search algorithm. Material Testing 54(3):185–188

    Article  Google Scholar 

  19. Durkota K (2011) Implementation of a discrete firefly algorithm for the qap problem within the seage framework. Master’s thesis, Electrical Engineering, Czech Technical University, Prague

  20. Egeblad J, Pisinger D (2009) Heuristic approaches for the two- and three-dimensional knapsack packing problem. Comput Oper Res 36(4):1026–1049

    Article  MathSciNet  MATH  Google Scholar 

  21. Elkeran A (2013) A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering. Eur J Oper Res 231(3):757–769

    Article  MathSciNet  MATH  Google Scholar 

  22. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester

  23. Falcon R, Almeida M, Nayak A (2011) Fault identification with binary adaptive fireflies in parallel and distributed systems. In: IEEE congress on evolutionary computation, CEC-2011. IEEE, pp. 1359–1366

  24. Fister I, Fister Jr. I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithm. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  25. Freville A, Plateau G (1990) Hard 0-1 multiknapsack test problems for size reduction methods. Investigation Operativa 1:251–270

    Google Scholar 

  26. Garcia S, Fernandez A, Luengo J (2009) A study of statistical techniques and performance measures for genetic-based machine learning: accuracy and interpretability. Soft Comput 13:959–977

    Article  Google Scholar 

  27. Garcia S, Fernandez A, Luengo J, Herrera F (2010) Advanced non-parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064

    Article  Google Scholar 

  28. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms behavior: a case study on the cec2005 special season on real parameter optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  29. Glover F, Kochenberger GA (1996) Critical event tabu search for multidimensional knapsack problems. Meta-heuristics: Theory and Applications, Kluwer Academic Publisher, Cited By (since 1996) 63

  30. Jati G (2011) Evolutionary discrete firefly algorithm for travelling salesman problem. Adaptive and Intelligent Systems LNAI 6943:393–403

    Article  MathSciNet  Google Scholar 

  31. Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41(13):6047–6056

    Article  Google Scholar 

  32. Ke L, Feng Z, Ren Z, Wei X (2010) An ant colony optimization approach for the multidimensional knapsack problem. J Heuristics 16(1):65–83

    Article  MATH  Google Scholar 

  33. Kenedy J, Eberhart RC (1997) A discrete binary version of the particle swarm optimization. In: Computational cybernatics and simulation, vol 5. IEEE International Conference, Systems, Man, and Cybernatics, pp 4104–4108

  34. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: IEEE conference of neural networks, vol 4, pp 1942–1948

  35. Khadwilard A, Chansombat S, Thepphakorn T, Thapatsuwan P, Chainate W, Pongcharoen P (2011) Application offirefly algorithm and its parameter setting for job shop scheduling. In: The first symposium on hands-on research and development, pp 1–10

  36. Kong M, Tian P (2006) Apply the particle swarm optimization to the multidimensional knapsack problem. Lect Notes Comput Sci LNAI(4029):1140–1149

    Article  Google Scholar 

  37. Lee S, Soak S, Oh S, Pedrycz W, Jeon M (2008) Modified binary particle swarm optimization. Prog Nat Sci 18(9):1161–1166

    Article  MathSciNet  Google Scholar 

  38. Li ZK, Li N (2009) A novel multi-mutation binary particle swarm optimization for 0/1 knapsack problem. In: Control and decision conference 2009, pp 3042–3047

  39. Liu Y, Liu C (2009) A schema-guiding evolutionary algorithm for 0-1 knapsack problem. In: 2009 International association of computer science and information technology-spring conference, pp 160–164

  40. Luengo J, Garcia S, Herrera F (2009) A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests. Expert Syst Appl 36:7798–7808

    Article  Google Scholar 

  41. Malan KM, Engelbrecht AP (2014) Recent advances in the theory and application of fitness landscapes. In: Ritcher H, Engelbrecht A (eds) Emergence, complexity and computation, vol 6. Springer, pp 103–132

  42. Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of levy stable stochastic processes. Phys Rev E 49(5):4677–4683

    Article  Google Scholar 

  43. Mishra A, Agarwal C, Sharma A, Bedi P (2014) Optimized gray-scale image watermarking using dwt-svd and firefly algorithm. Expert Syst Appl 41(17):7858–7867

    Article  Google Scholar 

  44. Ouaarab A, Ahiod B, Yang XS (2015) Random-key cuckoo search for the travelling salesman problem. Soft Comput 19:1099–1106

    Article  Google Scholar 

  45. Palit S, Sinha S, Molla M, Khanra A, Kule M (2011) A cryptoanalytic attack on the knapsack crypto system using binary firefly algorithm. In: The second international conference on computer and communication technology, ICCCT-2011, IEEE, pp 428–432

  46. Pirkul H (1987) A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Nav Res Logist 34:161–172

    Article  MATH  Google Scholar 

  47. Rahmaniani R, Ghaderi A (2013) A combined facility location and network design problem with multi-type of capacited links. Appl Math Model 37:6400–6414

    Article  MathSciNet  Google Scholar 

  48. Rahnamayan S, Tizhoosh HR, Salama MMA (2006) Opposition-based differential evolution algorithms. In: IEEE congress on evolutionary computation, pp 2010–2017

  49. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition versus randomness in soft computing techniques. Appl Soft Comput 8:906–918

    Article  Google Scholar 

  50. Senyu S, Toyada Y (1967) An approach to linear programming with 0-1 variables. Manag Sci 15:B196–B207

    Google Scholar 

  51. Shi HX (2006) Solution to 0/1 knapsack problem based on improved ant colony algorithm. In: International conference on information acquisition 2006, pp 1062–1066

  52. Shi W (1979) A branch and bound method for the multiconstraint zero one knapsack problem. J Oper Res Soc 30:369–378

    Article  Google Scholar 

  53. Suganthan PN, Hasen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Tech. rep., Nanyang Technical University, Singapore

  54. Tan RR (2007) Hybrid evolutionary computation for the development of pollution prevention and control strategies. J Clean Prod 15(10):902–906

    Article  Google Scholar 

  55. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modeling control and automation, pp 695–701

  56. Walton S, Hassan O, Morgan K, Brown M (2011) Modified cuckoo search: a new gradient free optimisation algorithm. Chaos Solitons Fractals 44(9):710–718

    Article  Google Scholar 

  57. Wang H, Zhijian W, Rahnamayan S (2011) Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems. Soft Comput 15:2127–2140

    Article  Google Scholar 

  58. Wang L, Yang RX, Xu Y (2013) An improved adaptive binary harmony search algorithm. Inf Sci 232:58–87

    Article  MathSciNet  Google Scholar 

  59. Wanga Y, Feng XY, Huang YX, Pub DB, Zhoua WG, Liang YC, Zhou CG (2007) A novel quantum swarm evolutionary algorithm and its applications. Neurocomputing 70:633–640

    Article  Google Scholar 

  60. Weingartner HM, Ness DN (1967) Methods for the solution of the multi-dimensional 0/1 knapsack problem. Oper Res 15(1):83–103

    Article  Google Scholar 

  61. Yang XS (2008) Firefly algorithm. Nature-Inspired Metaheuristic Algorithms 20:79–90

    Google Scholar 

  62. Yang XS (2009) Firefly algorithm for multimodal optimization. Lect Notes Comput Sci 5792:169–178

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press

  64. Yang XS, Deb S (2009) Cuckoo search via levy flights. In: World congress on nature biologically inspired computing, pp 210–214

  65. Yang XS, Gandomi AH, Talatahari S, Alavi AH (2013) Metaheuristics in water, geotechnical and transport engineering, Elsevier

  66. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1-4):55–61

    Article  Google Scholar 

  67. Zhao JF, Huang TL, Pang F, Liu YJ (2009) Genetic algorithm based on greedy strategy in the 0-1 knapsack problem. In: 3Rd international conference on genetic and evolutionary computing, WGEC ’09, pp 105–107

  68. Zhou GD, Yi TH, Li HN (2014) Sensor placement optimization in structural health monitoring using cluster-in-cluster firefly algorithm. Adv Struct Eng 17(8):1103–1115

    Article  Google Scholar 

  69. Zou D, Gao L, Li S, Wu J (2011) Solving 0-1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput 11:1556–1564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Sarmah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, K.K., Sarmah, S.P. Modified swarm intelligence based techniques for the knapsack problem. Appl Intell 46, 158–179 (2017). https://doi.org/10.1007/s10489-016-0822-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0822-y

Keywords

Navigation