Skip to main content
Log in

A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel immune dominance selection multi-objective optimization algorithm (IDSMOA) to solve multi-objective numerical and engineering optimization problems in the real world. IDSMOA was inspired by the mechanism that controls how B cells and T cells differentiate, recombine, and mutate self-adjustably to produce new lymphocytes matching antigens with high affinity, then how lymphocytes cooperatively eliminate antigens. The main idea of IDSMOA is to promote 2 populations, population B and population T, to coevolve through an immune selection operator, immune clone operator, immune gen operator, and memory selection operator to produce satisfying Pareto front. Therefore, several operators enable IDSMOA to exploit and excavate the search space, and decrease the number of dominance resistant solutions (DRSs). We compared IDSMOA performance with 3 known multi-objective optimization algorithms and IDSMOA without the combination operator in simulation experiments optimizing 12 benchmark functions. Our simulations indicated that IDSMOA is a competitive optimization tool for multi-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hernández C, Naranjani Y, Sardahi Y, Liang W, Schütze O, Sun J-Q (2013) Simple cell mapping method for multi-objective optimal feedback control design. Int J Dynam Control 1:231–238. doi:10.1007/s40435-013-0021-1

    Article  Google Scholar 

  2. Hiremath N C, Sahu S, Tiwari M K (2013) Multi-objective outbound logistics network design for a manufacturing supply chain. J Intell Manuf 24:1071–1084. doi:10.1007/s10845-012-0635-8

    Article  Google Scholar 

  3. Karthikeyan S, Asokan P, Nickolas S (2014) A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints. Int J Adv Manuf Technol 72:1567–1579. doi:10.1007/s00170-014-5753-3

    Article  Google Scholar 

  4. Shi Y, Li R, Zhang Y, Peng X (2015) An immunity-based time series prediction approach and its application for network security situation. Intel Serv Robotics 8:1–22. doi:10.1007/s11370-014-0160-z

    Article  Google Scholar 

  5. Zavala G R, Nebro A J, Luna F, Coello Coello C A (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidisc Optim 49:537–558. doi:10.1007/s00158-013-0996-4

    Article  MathSciNet  Google Scholar 

  6. Zandieh M, Karimi N (2011) An adaptive multi-population genetic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times. J Intell Manuf 22:979–989. doi:10.1007/s10845-009-0374-7

    Article  Google Scholar 

  7. Wang L, Zhou G, Xu Y, Liu M (2012) An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling. Int J Adv Manuf Technol 60:1111–1123. doi:10.1007/s00170-011-3665-z

    Article  Google Scholar 

  8. Padhye N, Branke J, Mostaghim S (2009) Empirical comparison of mopso methods-guide selection and diversity preservation. In: IEEE Congress on Evolutionary Computation, IEEE 2009

  9. Ganguly S, Sahoo N C, Das D (2010) A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation. Energy Syst 1:291–337. doi:10.1007/s12667-010-0014-5

    Article  Google Scholar 

  10. Tavakkoli-Moghaddam R, Rahimi-Vahed A R, Mirzaei A H (2008) Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int J Adv Manuf Technol 36:969–981. doi:10.1007/s00170-006-0906-7

    Article  Google Scholar 

  11. Qu G-d, Lou Z-h (2013) Application of particle swarm algorithm in the optimal allocation of regional water resources based on immune evolutionary algorithm. J Shanghai Jiaotong Univ (Sci) 18 (5):634–640. doi:10.1007/s12204-013-1442-x

    Article  Google Scholar 

  12. Liu F, Zhu S-f, Chai Z-y, Qi Y-t, Wu J-s (2013) Immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network. Wireless Netw 19:507–516. doi:10.1007/s11276-012-0481-9

    Article  Google Scholar 

  13. Sepulveda M J, Chau W J, Gogniat G, Strum M (2012) A multi-objective adaptive immune algorithm for multi-application NoC mapping. Analog Integr Circ Sig Process 73:851–860. doi:10.1007/s10470-012-9869-9

    Article  Google Scholar 

  14. Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on multiobjective optimization. In: Workshop on Multiple Objective (MOMH 2002). Springer-Verlag. Evolutionary Metaheuristics

  15. Aguirre H, Tanaka K (2009) Adaptive ε-Ranking on many-objective problems. Evol Intel 2:183–206. doi:10.1007/s12065-009-0031-2

    Article  Google Scholar 

  16. Zheng X Y, Li R (2014) Lagrange multiplier rules for weak approximate pareto solutions of constrained vector optimization problems in hilbert spaces. J Optim Theory Appl 162:665–679. doi:10.1007/s10957-012-0259-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Durea M, Dutta J, Tammer C (2010) Lagrange multipliers for ε-Pareto solutions in vector optimization with nonsolid cones in banach spaces. J Optim Theory Appl 145:196–211. doi:10.1007/s10957-009-9609-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Sørensen S N, Stolpe M (2015) Global blending optimization of laminated composites with discrete material candidate selection and thickness variation. Struct Multidisc Optim 52:137–155. doi:10.1007/s00158-015-1225-0

    Article  MathSciNet  Google Scholar 

  19. Mehmani A, Chowdhury S, Messac A (2015) Predictive quantification of surrogate model fidelity based on modal variations with sample density. Struct Multidisc Optim 52:353–373. doi:10.1007/s00158-015-1234-z

    Article  Google Scholar 

  20. Shiga M, Tangkaratt V, Sugiyama M (2015) Direct conditional probability density estimation with sparse feature selection. Mach Learn 100:161–182. doi:10.1007/s10994-014-5472-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Sepu’lveda M J, Gogniat W J C G, Strum M (2012) A multi-objective adaptive immune algorithm for multi-application NoC mapping. Analog Integr Circ Sig Process 73:851–860. doi:10.1007/s10470-012-9869-9

    Article  Google Scholar 

  22. Chen J, Lin Q, Ji Z (2011) Chaos-based multi-objective immune algorithm with a fine-grained selection mechanism. Soft Comput 15:1273–1288. doi:10.1007/s00500-010-0661-4

    Article  Google Scholar 

  23. Luo J, Chen C, Xie J (2015) Multi-objective immune algorithm with preference-based selection for reservoir flood control operation. Water Resour Manage 29:1447–1466. doi:10.1007/s11269-014-0886-6

    Article  Google Scholar 

  24. Coelho G P, da Silva A E A, Von Zuben F J (2010) An immune-inspired multi-objective approach to the reconstruction of phylogenetic trees. Neural Comput Applic 19:1103–1132. doi:10.1007/s00521-010-0389-1

    Article  Google Scholar 

  25. Chen J, Ding Y, Jin Y, Hao K (2013) A synergetic immune clonal selection algorithm based multi-objective optimization method for carbon fiber drawing process. Fibers Polym 14(10):1722–1730

    Article  Google Scholar 

  26. Deb K, Padhye N (2014) Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57.3:761–794

    Article  MathSciNet  MATH  Google Scholar 

  27. Gong M, Liu C, Jiao L, Cheng G (2010) Hybrid immune algorithm with Lamarckian local search for multi-objective optimization. Memetic Comp 2:47–67. doi:10.1007/s12293-009-0028-5

    Article  Google Scholar 

  28. Padhye N, Bhardawaj P, Deb K (2013) Improving differential evolution through a unified approach. J Glob Optim 55.4:771–799

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang P, Zeng K, Li C, Yang J, Wang S (2015) An improved hybrid immune algorithm for mechanism kinematic chain isomorphism identification in intelligent design. Soft Comput 19:217–223. doi:10.1007/s00500-014-1244-6

    Article  Google Scholar 

  30. Wu W-J, Lin S-W, Moon W K An artificial immune system-based support vector machine approach for classifying ultrasound breast tumor images. J Digit Imaging. doi:10.1007/s10278-014-9757-1

  31. Yıldız A R, Öztürk N, Kaya N, Öztürk F (2007) Hybrid multi-objective shape design optimization using Taguchi’s method and genetic algorithm. Struct Multidisc Optim 34:317–332. doi:10.1007/s00158-006-0079-x

    Article  Google Scholar 

  32. Gong M, Jiao L, Ma W, Shang R (2009) Hybrid immune algorithm with intelligent recombination. In: IEEE Congress on Evolutionary Computation (CEC 2009), pp 1807–1814

  33. Ma J, Lei Y, Wang Z, Jiao L, Liu R (2014) A memetic algorithm based on immune multiobjective optimization for flexible job-shop scheduling problems

  34. Kukkonen S, Lampinen J (2007) Ranking-dominance and many-objective optimization. In: IEEE congress on evolutionary computation, 2007. CEC 2007, pp 3983–3990

  35. Koppen M, Yoshida K (2007) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Evolutionary multi-criterion optimization, pp 727–741

  36. Hughes E J (2005) Evolutionary many-objective optimisation: many once or one many in evolutionary computation, 2005. In: The 2005 IEEE Congress on, pp 222–227

  37. Hughes EJ (2008) Fitness assignment methods for many-objective problems. In: Multi-objective problem solving from nature, pp 307–329

  38. Rubio-Largo Á, Zhang Q, Vega-Rodríguez M A (2015) Multi-objective evolutionary algorithm based on decomposition for 3-objective optimization problems with objectives in different scales. Soft Comput 19:157–166. doi:10.1007/s00500-014-1239-3

    Article  Google Scholar 

  39. Saif U, Guan Z, Liu W, Wang B, Zhang C (2014) Multi-objective artificial bee colony algorithm for simultaneous sequencing and balancing of mixed model assembly line. Int J Adv Manuf Technol 18091827:75. doi:10.1007/s00170-014-6153-4

    Google Scholar 

  40. Zhang Z, Wang L, Long F (2015) Immune optimization approach solving multi-objective chance-constrained programming. Evol Syst 6:4153. doi:10.1007/s12530-013-9101-x

    Article  Google Scholar 

  41. Louis S J (1993) Syntactic analysis of convergence in genetic algorithms//foundation of genetic algorithms(2nd edition). Morgan Kaufmann Publishers, San Francisco, pp 141–151

    Google Scholar 

  42. David W C, Joshua D K (2007) Techniques for highly multi-objective optimisation: some nondominated points are better than others. In: Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM, London, England

  43. Ikeda K, Kita H, Kobayashi S (2001) Failure of Pareto-based MOEAs: non-dominated really mean near to optimal in evolutionary computation. Proceedings of the 2001 Congress on 2:957– 962

    Article  Google Scholar 

  44. Zhong Y-B, Xiang Y, Liu H-L (2014) A multi-objective artificial bee colony algorithm based on division of the searching space. Appl Intell 41:987–1011. doi:10.1007/s10489-014-0555-8

    Article  Google Scholar 

  45. Cheshmehgaz H R, Desa M I, Wibowo A (2013) Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl Intell 38:331–356. doi:10.1007/s10489-012-0375-7

    Article  Google Scholar 

  46. Coello Coello C A (2005) Recent trends in evolutionary multi-objective optimization. In: Abaham A, Jain L C, Goldberg R (eds) Evolutionary multi-objective optimization: theoretical advances and applications. Springer, Berlin, pp 7–32

  47. Xiao J -k, Li W -m, Li W, Xiao X -r (2015) Optimization on black box function optimization problem. Math Probl Eng 2015(647234):10. doi:10.1155/2015/647234

    Google Scholar 

Download references

Acknowledgments

This study was co-supported by the National Natural Science Foundation of China (Nos. 61473309 and 61472443). And we thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ke Xiao.

Appendices

Appendix A: Benchmark function

  1. (a)

    DEB

    $$f_{1} \left( {\vec{{x}}} \right)=x_{1} $$
    $$f_{2} \left( {\vec{{x}}} \right)=\left( {1+10x_{2}} \right)\left[ {1-\left( {\frac{x_{1}} {1+10x_{2}} } \right)^{2}-\frac{x_{1}} {1+10x_{2}} \sin \left( {8\pi x_{1}} \right)} \right] $$

    variable number is 2, x i ∈[0,1](i=1,2)

  2. (b)

    KUR

    $$f_{1} \left( {\vec{{x}}} \right)=\sum\limits_{i=1}^{m-1} {\left( {-10\exp \left( {-0.2} \right)\sqrt {{x_{i}^{2}} +x_{i+1}^{2}} } \right)} $$
    $$f_{2} \left( {\vec{{x}}} \right)=\sum\limits_{i=1}^{m} {\left( {\left| {x_{i}} \right|^{0.8}+5\sin {x_{i}^{3}}} \right)} $$

    variable number is 3, x i ∈[−5,5](i=1,2,3)

  3. (c)

    ZDT1

    $$f_{1} \left( {\vec{{x}}} \right)=x_{1} $$

    \(f_{2} \left ({\vec {{x}}} \right )=g\left ({\vec {{x}}} \right )\left [ {1-\sqrt {x_{1} /g\left ({\vec {{x}}} \right )}} \right ]\), where \(g\left ({\vec {{x}}} \right )=1+9\sum \limits _{i=2}^{m} {x_{i} /\left ({m-1} \right )} \) variable number is m=30, x i ∈[0,1](i=1,2,⋯,m)

  4. (d)

    ZDT2

    $$f_{1} \left( {\vec{{x}}} \right)=x_{1} $$

    \(f_{2} \left ({\vec {{x}}} \right )=g\left ({\vec {{x}}} \right )\left [ {1-\left ({x_{1} /g\left ({\vec {{x}}} \right )} \right )^{2}} \right ]\), where \(g\left ({\vec {{x}}} \right )=1+9\sum \limits _{i=2}^{m} {x_{i} /\left ({m-1} \right )}\) variable number is m=30, x i ∈[0,1](i=1,2,⋯,m)

  5. (e)

    ZDT3

    $$f_{1} \left( {\vec{{x}}} \right)=x_{1} $$
    $$f_{2} \left( {\vec{{x}}} \right)=g\left( {\vec{{x}}} \right)\left[ {1-\sqrt {x_{1} /g\left( {\vec{{x}}} \right)} -x_{1} /g\left( {\vec{{x}}} \right)\sin \left( {10\pi x_{1}} \right)} \right] $$

    where \(g\left ({\vec {{x}}} \right )=1+9\sum \limits _{i=2}^{m} {x_{i} /\left ({m-1} \right )}\) variable number is m=30, x i ∈[0,1](i=1,2,⋯,m)

  6. (f)

    ZDT4

    $$f_{1} \left( {\vec{{x}}} \right)=x_{1} $$

    \(f_{2} \left ({\vec {{x}}} \right )=g\left ({\vec {{x}}} \right )\left [ {1-\sqrt {x_{1} /g\left ({\vec {{x}}} \right )}} \right ]\), where \(g\left ({\vec {{x}}} \right )=1+10\left ({m-1} \right )+\sum \limits _{i=2}^{m} {\left [ {{x_{i}^{2}} -10\cos \left ({4\pi x_{i}} \right )} \right ]} \) variable number is m=10, x 1∈[0,1], x i ∈[−5,5](i=2,3,⋯,m)

  7. (g)

    ZDT6

    $$f_{1} \left( {\vec{{x}}} \right)=1-\exp \left( {-4x_{1}} \right)\sin^{6}\left( {4\pi x_{1}} \right) $$

    \(f_{2} \left ({\vec {{x}}} \right )=g\left ({\vec {{x}}} \right )\left [ {1-\left ({f_{1} \left ({\vec {{x}}} \right )/g\left ({\vec {{x}}} \right )} \right )^{2}} \right ]\), where \(g\left ({\vec {{x}}} \right )=1+9\left [ {\sum \limits _{i=2}^{m} {x_{i} /\left ({m-1} \right )}} \right ]^{0.25}\) variable number is m=10, x i ∈[0,1](i=1,2,⋯,m)

  8. (h)

    DTLZ1

    $$f_{1} \left( {\vec{{x}}} \right)=\frac{1}{2}x_{1} x_{2} {\cdots} x_{M-1} \left( {1+g\left( {X_{M}} \right)} \right) $$
    $$f_{2} \left( {\vec{{x}}} \right)=\frac{1}{2}x_{1} x_{2} {\cdots} \left( {1-x_{M-1}} \right)\left( {1+g\left( {X_{M}} \right)} \right) $$
    $$\vdots $$
    $$f_{M-1} \left( {\vec{{x}}} \right)=\frac{1}{2}x_{1} \left( {1-x_{2}} \right)\left( {1+g\left( {X_{M}} \right)} \right) $$
    $$f_{M} \left( {\vec{{x}}} \right)=\frac{1}{2}\left( {1-x_{1}} \right)\left( {1+g\left( {X_{M}} \right)} \right) $$

    where \(g\left ({X_{M}} \right )=100\{ | {X_{M}} |+\sum \limits _{x_{i} \in X_{M}} [ (x_{i} -0.5 )^{2}-\cos (20\pi ({x_{i} -0.5} ) ) ] \}\) variable number is (M+|X M |−1), x i ∈[0,1](i=1,2,⋯,(M+|X M |−1))

  9. (i)

    DTLZ2

    $$f_{1} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1} \pi /2} \right)\cos \left( {x_{2} \pi /2} \right) $$
    $$\qquad\qquad{\cdots} \cos \left( {x_{M-2} \pi /2} \right)\cos \left( {x_{M-1} \pi /2} \right) $$
    $$f_{2} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1} \pi /2} \right)\cos \left( {x_{2} \pi /2} \right)$$
    $$\qquad\qquad{\cdots} \cos \left( {x_{M-2} \pi /2} \right)\sin \left( {x_{M-1} \pi /2} \right) $$
    $$\vdots $$
    $$f_{M-1} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1} \pi /2} \right)\sin \left( {x_{2} \pi /2} \right) $$
    $$f_{M} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\sin \left( {x_{1} \pi /2} \right) $$

    where \(g\left ({X_{M}} \right )=\sum \limits _{x_{i} \in X_{M}} {\left ({x_{i} -0.5} \right )^{2}} \) variable number is (M+|X M |−1), x i ∈[0,1](i=1,2,⋯,(M+|X M |−1))

  10. (j)

    DTLZ3

    $$f_{1} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1} \pi /2} \right)\cos \left( {x_{2} \pi /2} \right)$$
    $$\qquad\qquad{\cdots} \cos \left( {x_{M-2} \pi /2} \right)\cos \left( {x_{M-1} \pi /2} \right) $$
    $$f_{2} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1} \pi /2} \right)\cos \left( {x_{2} \pi /2} \right)$$
    $$\qquad\qquad{\cdots} \cos \left( {x_{M-2} \pi /2} \right)\sin \left( {x_{M-1} \pi /2} \right) $$
    $$\vdots $$
    $$f_{M-1} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1} \pi /2} \right)\sin \left( {x_{2} \pi /2} \right) $$
    $$f_{M} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\sin \left( {x_{1} \pi /2} \right) $$

    where

    $$g\left( {X_{M}} \right)\,=\,100\left\{ {\left| {X_{M}} \right|\,+\,\sum\limits_{x_{i} \in X_{M}} {\left[ {\left( {x_{i} \,-\,0.5} \right)^{2}\,-\,\cos \left( {20\pi \left( {x_{i} \,-\,0.5} \right)} \right)} \right]}} \right\} $$

    variable number is (M+|X M |−1), x i ∈[0,1](i=1,2,⋯,(M+|X M |−1))

  11. (k)

    DTLZ4

    $$f_{1} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1}^{\alpha} \pi /2} \right)\cos \left( {x_{2}^{\alpha} \pi /2} \right)$$
    $$\qquad\qquad{\cdots} \cos \left( {x_{M-2}^{\alpha} \pi /2} \right)\cos \left( {x_{M-1}^{\alpha} \pi /2} \right) $$
    $$f_{2} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1}^{\alpha} \pi /2} \right)\cos \left( {x_{2}^{\alpha} \pi /2} \right)$$
    $$\qquad\qquad{\cdots} \cos \left( {x_{M-2}^{\alpha} \pi /2} \right)\sin \left( {x_{M-1}^{\alpha} \pi /2} \right) $$
    $$\vdots $$
    $$f_{M-1} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\cos \left( {x_{1}^{\alpha} \pi /2} \right)\sin \left( {x_{2}^{\alpha} \pi /2} \right) $$
    $$f_{M} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)\sin \left( {x_{1}^{\alpha} \pi /2} \right) $$

    where \(g\left ({X_{M}} \right )=\sum \limits _{x_{i} \in X_{M}} {\left ({x_{i} -0.5} \right )^{2}} \), α=100 variable number is (M+|X M |−1), x i ∈[0,1](i=1,2,⋯,(M+|X M |−1))

  12. (l)

    DTLZ6

    $$f_{1} \left( {\vec{{x}}} \right)=x_{1} $$
    $$f_{2} \left( {\vec{{x}}} \right)=x_{2} $$
    $$\vdots $$
    $$f_{M-1} \left( {\vec{{x}}} \right)=x_{M-1} $$
    $$f_{M} \left( {\vec{{x}}} \right)=\left( {1+g\left( {X_{M}} \right)} \right)h\left( {f_{1} ,f_{2} ,{\cdots} ,f_{M-1} ,g} \right) $$

    where \(g\left ({X_{M}} \right )=1+\frac {9}{\left | {X_{M}} \right |}\sum \limits _{x_{i} \in X_{M}} {x_{i}} \)

    $$h\left( {f_{1} ,f_{2} ,{\cdots} ,f_{M-1} ,g} \right)=M-\sum\limits_{i=1}^{M} {\left[ {\frac{f_{i}} {1+g}\left( {1+\sin \left( {3\pi f_{i}} \right)} \right)} \right]} $$

    variable number is (M+|X M |−1), x i ∈[0,1](i=1,2,⋯,(M+|X M |−1))

Appendix B: Measurement index

  1. (1)

    coverage index

Supposing A and B stand for Pareto front set, coverage index I C (A,B) is calculated as follows:

$$I_{C} \left( {A,B} \right)\overset{\text{def}}{=} \frac{\left| {\left\{ {\vec{{b}}\in B;\exists \vec{{a}}\in A:\vec{{a}}\succ \vec{{b}}} \right\}} \right|}{\left| B \right|} $$

where I C (A,B)=1 means decision making vectors in B are dominated by decision making vectors in A, I C (A,B)=0 means decision making vectors in A are dominated by decision making vectors in B.

  1. (2)

    convergence index

Supposing \(P^{\ast } =\left \{ {\vec {{p}}_{1} ,\vec {{p}}_{2} ,\ldots ,\vec {{p}}_{\left | {P^{\ast } } \right |}} \right \}\) is ideal Pareto front set with distributing evenness, \(A=\left \{ {\vec {{a}}_{1} ,\vec {{a}}_{2} ,{\ldots } ,\vec {{a}}_{A}} \right \}\) is approximate Pareto front set calculated by optimization algorithm.

For every solution \(\vec {{a}}_{i} \) in set A, the minimal euclidean distance in P after normalization processing is calculated as follows:

$$d_{i} =\min\limits_{j=1}^{| {P^{\ast} } |} \sqrt{\sum\limits_{m=1}^{k} {\left( {\frac{f_{m} \left( {\vec{{a}}_{i}} \right)-f_{m} \left( {\vec{{p}}_{j}} \right)}{f_{m}^{\max} -f_{m}^{\min}} } \right)^{2}}} $$

where \(f_{m}^{\max } \) and \(f_{m}^{\min } \) stand for maximum and minimum of objective m in set P . Then convergence index is average of all point after normalization processing in set A, which is calculated as follows:

$$C\left( A \right)\overset{\text{def}}{=} \frac{\sum\limits_{i=1}^{\left| A \right|} {d_{i}} } {\left| A \right|} $$

Convergence index stands for distance between approximate Pareto front and ideal Pareto front. Therefore the less convergence index, the better solution and the closer to ideal Pareto front.

  1. (3)

    spacing index

Supposing A is approximate Pareto front, and spacing index S is defined as follows:

$$S\overset{\text{def}}{=} \sqrt {\frac{1}{\left| A \right|-1}\sum\limits_{i=1}^{\left| A \right|} {\left( {\bar{{d}}-d_{i}} \right)^{2}}} $$

where

$$\begin{array}{@{}rcl@{}} d_{i} &=&\min\limits_{j} \left\{ {\sum\limits_{m=1}^{k} {\left| {f_{m} \left( {\vec{{a}}_{i}} \right)-f_{m} \left( {\vec{{a}}_{j}} \right)} \right|}} \right\},\vec{{a}}_{i} ,\vec{{a}}_{j} \in A, i,\\ j&=&1,2,{\ldots} ,\left| A \right| \end{array} $$

\(\bar {{d}}\) is the average of all d i and k is objective number. S=0 means that nondominated solutions distributing is even in objective space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Jk., Li, Wm., Xiao, Xr. et al. A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems. Appl Intell 46, 739–755 (2017). https://doi.org/10.1007/s10489-016-0866-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0866-z

Keywords

Navigation