Abstract
Dynamic optimization holds promise to solve real world problems that require adaptation to dynamic environments. The challenge is to track optima in an ever changing landscape. This paper describes a new computational intelligence approach to dynamic optimization termed as wind driven dynamic optimization (WD2O). Basically, it relies on an enhanced Multi-Region Modified Wind Driven Optimization (MR-MWDO) model and exhibits four main features. First, a multi-region approach is used to classify regions of the search space into promising and non-promising areas with accordance to low and high pressure regions in the natural model. Second, it uses an effective collision avoidance strategy to prevent collision between sub-populations. Third, it allows cost effective change detection. Fourth, it maintains two types of populations in order to achieve better balanced search. The proposed WD2O has been successfully applied to Moving Peaks Benchmark (MPB) problem. An extensive experimental study has shown that WD2O outperforms significantly the first prototype MR-MWDO. Furthermore, it has shown very competitive results compared to state of the art methods and has achieved the best performance for high dimensional problems while keeping an appreciable time complexity.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wolpert D H, Macready W G (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. doi:10.1109/4235.585893
Fister J I, Yang X S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestn 80(3):1–7. arXiv:1307.4186
Du K L, Swamy MNS (2016) Search and optimization by metaheuristics: techniques and algorithms inspired by nature, Springer International Publishing
Toffolo A, Benini E (2003) Genetic diversity as an objective in multi-objective evolutionary algorithms. Evol Comput 11(2):151–167. doi:10.1162/106365603766646816
Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834. doi:10.1007/s00500-004-0422-3
Bui L, Abbass H, Branke J (2005) Multiobjective optimization for dynamic environments, IEEE
Blackwell T M, Branke J (2006) Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans Evol Comput 10(4):459–472. doi:10.1109/TEVC.2005.857074
Uyar A S, Harmanci A E (2005) A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput 9(11):803–814. doi:10.1007/s00500-004-0421-4
Yang S (2006) Associative memory scheme for genetic algorithms in dynamic environments Rothlauf F (ed), Springer, Heidelberg
Mavrovouniotis M, Yang S (2011) Memory-based immigrants for ant colony optimization in changing environments Cea DC (ed), Springer, Heidelberg
Li X, Branke J, Blackwell TM (2006) Particle swarm with speciation and adaptation in a dynamic environment. In: The genetic and evolutionary computation conference. ACM, New York, pp 51–58
Fernandez-Marquez J L, Arcos JL (2010) Adapting particle swarm optimization in dynamic and noisy environments. In: IEEE congr. evol. comput. IEEE, pp 1–8
Boulesnane A, Meshoul S (2014) A new multi-region modified wind driven optimization algorithm with collision avoidance for dynamic environments Tan Y, Shi Y, Coello C A (eds), Springer, Heidelberg
Hatzakis I, Wallace D (2006) Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach, ACM, New York
Rossi C, Abderrahim M, Díaz J C (2008) Tracking moving optima using kalman-based predictions. Evol Comput 16(1):1–30. doi:10.1162/evco.2008.16.1.1
Simões A, Costa E (2014) Prediction in evolutionary algorithms for dynamic environments. Soft Comput 18(8):1471–1497. doi:10.1007/s00500-013-1154-z
Chao C W, Fang S C, Liao C J (2012) A tropical cyclone-based method for global optimization. J Ind Manag Optim 8(1):103–115. doi:10.3934/jimo.2012.8.103
Yan G W, Hao Z J (2013) A novel optimization algorithm based on atmosphere clouds model. Int J Comp Intel Appl 12:1–16. doi:10.1142/S1469026813500028
Bayraktar Z, Komurcu M, Bossard J A, Werner D H (2013) The wind driven optimization technique and its application in electromagnetics. IEEE Trans Antennas Propag 61 (5):2745–2757. doi:10.1109/TAP.2013.2238654
Boulesnane A, Meshoul S (2015) A modified wind driven optimization model for global continuous optimization Onieva E, Santos I, Osaba E, Quintian H, Corchado E (eds), Springer, Bilbao, Spain
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Schölkopf B, Platt J, Hofmann T (eds) Symposium on micro machine and human science. IEEE, Nagoya, Japan, pp 39–43
Christopher J J, Nehemiah H K, Kannan A (2015) A swarm optimization approach for clinical knowledge mining. Comput Methods Progr Biomed 121(3):137–148. doi:10.1016/j.cmpb.2015.05.007
Bhandari A K, Kumar A, Singh G K (2015) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42(22):8707–8730. doi:10.1016/j.eswa.2015.07.025
Mahto S K, Choubey A, Suman S (2015) Linear array synthesis with minimum side lobe level and null control using wind driven optimization, IEEE, Guntur, India
Alba E, Nakib A, Siarry P (2013) Metaheuristics for dynamic optimization. Springer, Berlin
Nguyen T T, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24. doi:10.1016/j.swevo.2012.05.001
James R H, Gregory J H (2013) An introduction to dynamic meteorology. Academic Press, Amsterdam
Blackwell T M (2007) Particle swarm optimization in dynamic environments. In: Yang S, Ong YS, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, pp 29–49
Nguyen T T, Yang S, Branke J, Yao X (2013a) Evolutionary dynamic optimization: methodologies Yang S, Yao X (eds), Springer, Berlin
Janson S, Middendorf M (2006) A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet Program Evolvable Mach 7(4):329–354. doi:10.1007/s10710-006-9014-6
Morrison R W (2004) Designing evolutionary algorithms for dynamic environments. Springer, Berlin
Richter H (2009) Detecting change in dynamic fitness landscapes, IEEE, Trondheim
Singh H K, Isaacs A, Nguyen T T, Ray T, Yao X (2009) Performance of infeasibility driven evolutionary algorithm (idea) on constrained dynamic single objective optimization problems Tyrrell A (ed), IEEE Press, Piscataway
Du Plessis M C, Engelbrecht A P (2013) Self-adaptive differential evolution for dynamic environments with fluctuating numbers of optima Alba E, Nakib A, Siarry P (eds), Springer, Berlin
Kamosi M, Hashemi A B, Meybodi MR (2010a) A new particle swarm optimization algorithm for dynamic environments. In: Swarm, evolutionary, and memetic computing lecture notes in computer science. Springer, India, pp 129–138
Mukherjee R, Debchoudhury S, Swagatam D (2016) Modified differential evolution with locality induced genetic operators for dynamic optimization. Eur J Oper Res 253(2):337–355. doi:10.1016/j.ejor.2016.02.042
Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput 14(6):959–974. doi:10.1109/TEVC.2010.2046667
Nguyen TT, Jenkinson I, Yang Z (2013b) Solving dynamic optimisation problems by combining evolutionary algorithms with kd-tree, IEEE
Branke J (1999) Memory enhanced evolutionary algorithms for changing optimisation problems, Springer, Washington, DC
Branke J, Schmeck H (2003) Designing evolutionary algorithms for dynamic optimization problems Tsutsui S, Ghosh A (eds), Springer, Berlin Heidelberg
Du Plessis M C, Engelbrecht A P (2012) Differential evolution for dynamic environments with unknown numbers of optima. J Glob Optim 55(1):73–99. doi:10.1007/s10898-012-9864-9
Rezazadeh I, Meybodi M R, Naebi A (2011) Adaptive particle swarm optimization algorithm for dynamic environments. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Advances in swarm intelligence. Springer, Heidelberg, pp 120–129
Lung R I, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput 9(1):83–94. doi:10.1007/s11047-009-9129-9
Li C, Yang S (2012) A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans Evol Comput 16(4):556–577. doi:10.1109/TEVC.2011.2169966
Kamosi M, Hashemi A B, Meybodi MR (2010b) A hibernating multi-swarm optimization algorithm for dynamic environments, IEEE, Fukuoka
Acknowledgments
This work has been supported by the National Research Project CNEPRU under grant N: B*07120140037.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boulesnane, A., Meshoul, S. WD2O: a novel wind driven dynamic optimization approach with effective change detection. Appl Intell 47, 488–504 (2017). https://doi.org/10.1007/s10489-017-0895-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-017-0895-2