Skip to main content
Log in

Human mental search: a new population-based metaheuristic optimization algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Population-based metaheuristic algorithms have become popular in recent years with them getting used in different fields such as business, medicine, and agriculture. The present paper proposes a simple but efficient population-based metaheuristic algorithm called Human Mental Search (HMS). HMS algorithm mimics the exploration strategies of the bid space in online auctions. The three leading steps of HMS algorithm are: (1) the mental search that explores the region around each solution based on Levy flight, (2) grouping that determines a promising region, and (3) moving the solutions toward the best strategy. To evaluate the efficiency of HMS algorithm, some test functions with different characteristics are studied. The results are compared with nine state-of-the-art metaheuristic algorithms. Moreover, some nonparametric statistical methods, including Wilcoxon signed rank test and Friedman test, are provided. The experimental results demonstrate that the HMS algorithm can present competitive results compared to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  2. Hwang C-R (1988) Simulated annealing: theory and applications. Acta Appl Math 12(1):108–111

    Google Scholar 

  3. Kirkpatrick S (1984) Optimization by simulated annealing: Quantitative studies. J Stat Phys 34(5-6):975–986

    Article  MathSciNet  Google Scholar 

  4. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  5. Mitchell M, Holland JH (1993) When will a genetic algorithm outperform hill-climbing?

  6. Stützle T (1998) Local search algorithms for combinatorial problems. Darmstadt University of Technology PhD Thesis

    Google Scholar 

  7. Lai C-C, Chang C-Y (2009) A hierarchical evolutionary algorithm for automatic medical image segmentation. Expert Syst Appl 36(1):248–259

    Article  Google Scholar 

  8. Li Y, Jiao L, Shang R, Stolkin R (2015) Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf Sci 294:408–422

    Article  MathSciNet  Google Scholar 

  9. Tayarani-N M-H, Yao X, Xu H (2015) Meta-Heuristic Algorithms in Car Engine Design: A Literature Survey. IEEE Trans Evol Comput 19(5):609–629

    Article  Google Scholar 

  10. Yuwono M, Qin Y, Zhou J, Guo Y, Celler BG, Su SW (2016) Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model. Eng Appl Artif Intell 47:88–100

    Article  Google Scholar 

  11. MousaviRad S, Tab FA, Mollazade K (2012) Application of imperialist competitive algorithm for feature selection: a case study on bulk rice classification. Int J Comput Appl 40(16)

  12. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press

  13. Hansen N, Müller S D, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

    Article  Google Scholar 

  14. Rechenberg I (1994) Evolution strategy. Computational intelligence: Imitating life 1

  15. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  16. Baluja S (1994) Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning. DTIC Document

  17. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3 (2):82–102

    Article  Google Scholar 

  18. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  19. Shi Y, Eberhart R (1998) modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. IEEE, pp 69–73

  20. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, New York, NY, pp 39–43

  21. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department

  22. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009. IEEE, pp 210–214

  23. Łukasik S, żak S (2009) Firefly algorithm for continuous constrained optimization tasks. In: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. Springer, pp 97–106

  24. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  25. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  26. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  27. Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines

  28. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci 179 (13):2232–2248

    Article  MATH  Google Scholar 

  29. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  30. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  31. Mirjalili S (2016) SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems

  32. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  33. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007. CEC 2007. IEEE Congress on Evolutionary Computation. IEEE, pp 4661–4667

  34. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1 (1):67–82

    Article  Google Scholar 

  35. Radicchi F, Baronchelli A, Amaral LA (2012) Rationality, irrationality and escalating behavior in lowest unique bid auctions. PloS one 7(1):e29910

    Article  Google Scholar 

  36. Radicchi F, Baronchelli A (2012) Evolution of optimal Lévy-flight strategies in human mental searches. Phys Rev E 85(6):061121

    Article  Google Scholar 

  37. Yang X-S (2010) Engineering optimization: An introduction with metaheuristic applications. Wiley

  38. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Modell Numer Optim 1 (4):330–343

    MATH  Google Scholar 

  39. Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. J Royal Stat Soc Ser C (Appl Stat) 28(1):100–108

    MATH  Google Scholar 

  40. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506

    Article  MathSciNet  MATH  Google Scholar 

  41. Molga M, Smutnicki C (2005) Test functions for optimization needs. Test functions for optimization needs

  42. Yang XS (2010) Appendix A: test problems in optimization. Engineering optimization:261–266

  43. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  44. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report 2005005:2005

    Google Scholar 

  45. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  46. Merrikh-Bayat F (2015) The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput 33:292–303

    Article  Google Scholar 

  47. Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics:65–70

  48. Liu S-H, Mernik M, HrnčIč D, Črepinšek M (2013) A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova’s mass transfer model. Appl Soft Comput 13(9):3792–3805

    Article  Google Scholar 

  49. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inf 16(3):193–203

    Article  Google Scholar 

  50. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11):1245– 1287

    Article  MathSciNet  MATH  Google Scholar 

  51. Deb K (1997) GeneAS: A robust optimal design technique for mechanical component design. In: Evolutionary Algorithms in Engineering Applications. Springer, pp 497–514

  52. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  MathSciNet  Google Scholar 

  53. Huang F-Z, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  54. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    Article  MathSciNet  MATH  Google Scholar 

  55. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267– 289

    Article  MATH  Google Scholar 

  56. Kannan B, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Article  Google Scholar 

  57. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229

    Article  Google Scholar 

  58. Coello Coello CA (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Syst 17(4):319–346

    Article  Google Scholar 

  59. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2):311–338

    Article  MATH  Google Scholar 

  60. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902– 3933

    Article  MATH  Google Scholar 

  61. Krohling RA, Dos Santos Coelho L (2006) Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems. IEEE Trans Syst, Man, Cybern, Part B (Cybern) 36 (6):1407–1416

    Article  Google Scholar 

  62. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98(3):1021–1025

    Article  Google Scholar 

  63. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178(15):3043–3074

    Article  Google Scholar 

  64. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  65. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

  66. RAY T, SAINI P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748

    Article  Google Scholar 

  67. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  68. Tsai J-F (2005) Global optimization of nonlinear fractional programming problems in engineering design. Eng Optim 37(4):399–409

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Authors are grateful to University of Kashan for supporting this work under grant NO. 572086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jalaleddin Mousavirad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavirad, S.J., Ebrahimpour-Komleh, H. Human mental search: a new population-based metaheuristic optimization algorithm. Appl Intell 47, 850–887 (2017). https://doi.org/10.1007/s10489-017-0903-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0903-6

Keywords

Navigation