Skip to main content
Log in

Using a hybrid of fuzzy theory and neural network filter for single image dehazing

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

When photographs are being taken in an outdoor environment, the medium in air will cause light attenuation and further reduce image quality, and this impact is especially obvious in a hazy environment. Reduction of image quality results in the loss of information, which renders an image recognition system unable to identify objects in the image. In order to eliminate the hazy effect on images and improve the visual quality, this paper presents an efficient method combining the fuzzy inference system and the neural network filter to solve image dehazing. During dehazing, the fuzzy inference system is adopted to estimate the variations in light attenuation, and the erosion of morphological operation and the neural network filter are used to eliminate the halation and achieve optimization in transmission map refinement. Finally, the brightest 1% of the atmospheric light is utilized to calculate the color vector of atmospheric light to eliminate color cast. Experimental results indicate that the proposed method is superior to other dehazing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Brulin D, Benezeth Y, Courtial E (2012) Posture recognition based on fuzzy logic for home monitoring of the elderly. IEEE Trans Inf Technol Biomed 16(5):974982

    Article  Google Scholar 

  2. Kim H-H, Kim D-J, Park K-H (2012) Robust elevator button recognition in the presence of partial occlusion and clutter by specular reflections. IEEE Trans Ind Electron 59(3):1597– 1611

    Article  Google Scholar 

  3. Walk S, Majer N, Schindler K, Schiele B (2010) New features and insights for pedestrian detection Proceeding of the 2010 IEEE conference on computer vision and pattern recognition, pp 1030–1037

    Chapter  Google Scholar 

  4. McCall JC, Trivedi MM (2006) Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Trans Intell Transp Syst 7(1):20–37

    Article  Google Scholar 

  5. Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 325–332

  6. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254

    Article  MATH  Google Scholar 

  7. Narasimhan SG, Nayar SK (2000) Chromatic framework for vision in bad weather Proceedings of the 2000 IEEE conference on computer vision and pattern recognition, vol 1, pp 598–605

  8. Nayar SK, Narasimhan SG (1999) Vision in bad weather Proceedings of the 1999 seventh IEEE international conference on computer vision, vol 2, pp 820–827

  9. Shwartz S, Namer E, Schechner YY (2006) Blind haze separation Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06), vol 2, pp 1984–1991

  10. Fattal R (2008) Single image dehazing. In: Proceedings of ACM SIGGRAPH 2008 27(3):1–8

    Google Scholar 

  11. Tan RT (2008) Visibility in bad weather from a single image Proceedings of the 2008 IEEE conference on computer vision and pattern recognition, pp 1–8

    Google Scholar 

  12. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image Proceedings of the 2009 IEEE 12th international conference on computer vision, pp 2201– 2208

    Chapter  Google Scholar 

  13. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  14. Kopf J, Neubert B, Chen B, Cohen M, Cohen-Or D, Deussen O, Uyttendaele M, Lischinski D (2008) Deep photo: Model-based photograph enhancement and viewing. ACM Trans Graph 27(5):1–10

    Article  Google Scholar 

  15. Long J, Shi Z, Tang W, Zang C (2014) Single remote sensing image dehazing. IEEE Geosci Remote Sens Lett 11(1):59–63

    Article  Google Scholar 

  16. Liu HB, Yang J, Wu ZP, Zhang QN (2015) Fast single image dehazing based on image fusion. J Electron Imaging 24(1):013020–1–013020-10

    Google Scholar 

  17. Pham DL (2001) Spatial models for fuzzy clustering. Comput Vis Image Underst 84(2):285–297

    Article  MATH  Google Scholar 

  18. Van De Ville D, Nachtegael M, Van der Weken D, Kerre EE, Philips W, Lemahieu I (2003) Noise reduction by fuzzy image filtering. IEEE Trans Fuzzy Syst 11(4):429–436

  19. Mendoza O, Melin P, Licea G (2009) A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf Sci 179(13):2078–2101

    Article  Google Scholar 

  20. Peng DL, Wu TJ (2002) A generalized image enhancement algorithm using fuzzy sets and its application Proceedings of the 2002 IEEE conference on machine learning and cybernetics, vol 2, pp 820–823

  21. Daugman JG (1988) Complete discrete 2-D gabor transforms by neural networks for image analysis and compression. IEEE Trans Acoust Speech Signal Process 36(7):1169–1179

    Article  MATH  Google Scholar 

  22. Zhou Y-T, Chellappa R, Vaid A, Jenkins BK (1988) Image restoration using a neural network. IEEE Trans Acoust Speech Signal Process 36(7):1141–1151

    Article  MATH  Google Scholar 

  23. Rowley HA, Baluja S, Kanade T (1998) Neural network-based face detection. IEEE Trans Pattern Anal Mach Intell 20(1):23–38

    Article  Google Scholar 

  24. Kuo SC, Lin CJ, Liao JR (2011) 3D Reconstruction and face recognition using Kernel-based ICA and neural networks. Expert Syst Appl 38(5):5406–5415

    Article  Google Scholar 

  25. Kanellopoulos I, Wilkinson GG (1997) Strategies and best practice for neural network image classification. Int J Remote Sens 18(4):711–725

    Article  Google Scholar 

  26. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  27. Hautiere N, Tarel JP, Aubert D, Dumont É (2008) Blind contrast restoration assessment by gradient ratioing at visible edges, image anal. Stereol. 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  28. Shiau YH, Chen PY, Yang HY, Chen CH, Wang SS (2014) Weighted haze removal method with halo prevention. J Vis Commun Image Represent 25:445–453

    Article  Google Scholar 

  29. Ge GY, Wei ZZ, Zhao JX (2015) Fast single-image dehazing using iinear transformation. Optik 126:3245–3252

    Article  Google Scholar 

  30. Ni W, Gao X, Wang Y (2016) Single satellite image dehazing via linear intensity transformation and local property analysis. Neurocomputing 175(Part A):25–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jian Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HY., Lin, CJ. Using a hybrid of fuzzy theory and neural network filter for single image dehazing. Appl Intell 47, 1099–1114 (2017). https://doi.org/10.1007/s10489-017-0942-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0942-z

Keywords

Navigation