Skip to main content
Log in

Enhanced θ dominance and density selection based evolutionary algorithm for many-objective optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Many multi-objective evolutionary algorithms (MOEAs) have been developed for many-objective optimization. This paper proposes a new enhanced 𝜃 dominance and density selection based evolutionary algorithm (called 𝜃-EDEA) for many-objective optimization problems. We firstly construct an m-dimension hyper-plane using the extreme point on the each dimension. Then we replace the distance between the origin point and projection of solution on the reference line of 𝜃 dominance which recently is proposed in 𝜃 dominance based evolutionary algorithm (𝜃-DEA), with the perpendicular distance between each solution and the hyper-plane to develop an enhanced 𝜃 dominance. Finally, in order to maintain better diversity, 𝜃-EDEA employs density based selection mechanism to select the solution for the next population in the environment selection phase. 𝜃-EDEA still inherits clustering operator and ranking operator of 𝜃-DEA to balance diversity and convergence. The performance of 𝜃-EDEA is validated and compared with five state-of-the-art algorithms on two well-known many-objective benchmark problems with three to fifteen objectives. The results show that 𝜃-EDEA is capable of obtaining a solution set with better convergence and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The code of NSGA-III is from http://learntsinghuaeducn:8080/2012310563/ManyEAsrar.

  2. The code of GrEA is from http://www.tech.dmu.ac.uk/syang/publications.html.

  3. The code of MOEA/D is from http://dces.essex.ac.uk/staff/zhang/webofmoead.htm.

  4. The code of HypE is from http://www.tik.ee.ethz.ch/pisa.

  5. The code of 𝜃-DEA is from http://learntsinghuaeducn:8080/2012310563/ManyEAsrar.

References

  1. Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv 48(1):35. Article 13

    Article  Google Scholar 

  2. Amarjeet, Chhabra JK (2015) Improving package structure of object-oriented software using multi-objective optimization and weightedclass connections. Journal of King Saud University – Computer and Information Sciences

  3. Mkaouer W, Kessentini M, Shaout A, Koligheu P, Bechikh S, Deband K, Ouni A (2015) Many-objective software remodularization using NSGA-III. ACM Trans Softw Eng Methodol 24(3):45. Article 17

    Article  Google Scholar 

  4. Fu G, Kapelan Z, Kasprzyk JR, Reed P (2013) Optimal design of water distribution systems using many-objective visual analytics. J Water Resour Plan Manage 139(6):624–633

    Article  Google Scholar 

  5. Sülflow A, Drechsler N, Drechsler R (2007) Robust multi-objective optimization in high dimensional spaces. In: Proceeding of the evolutionary multi-criterion optimization. Matsushima, Japan, pp 715–726

    Chapter  Google Scholar 

  6. Yuan Y, Xu H (2015) Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans Autom Sci.Eng 12(1):336–353

    Article  Google Scholar 

  7. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  8. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: Improving the strength Pareto evolutionary algorithm. In: Proceedings of the evolutionary methods design optimization control application of industrial problem. Athens, Greece, pp 95–100

    Google Scholar 

  9. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  10. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II:Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd annual conference on genetic and evolutionary computation. San Francisco, CA, USA, pp 283– 290

    Google Scholar 

  11. Narukawa K, Rodemann T (2012) Examining the performance of evolutionary many-objective optimization algorithms on areal-world application. In: Proceedings of the 6th international conference on genetic evolutionary computation. Kitakyushu, Japan, pp 316–319

    Google Scholar 

  12. Lygoe RJ, Cary M, Fleming PJ (2013) A real-world application of a many-objective optimisation complexity reduction process. In: Proceedings of the 7th international conference on evolutionary multi-criterion optimization. Sheffield, U.K., pp 641–655

    Chapter  Google Scholar 

  13. Li K, Deb K, Zhang Q (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716

    Article  Google Scholar 

  14. Deb K, Saxena D Searching for pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the WCCI-2006, pp. 3352–3360

  15. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784

    Article  Google Scholar 

  16. Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Proceeding of the evolutionary multi-criterion optimization. Faro, Portugal, pp 376–390

    Chapter  Google Scholar 

  17. Purshouse RC, Fleming PJ (2003) Evolutionary many-objective optimization: An exploratory analysis. In: Proceedings of the IEEE congress on evolutionary computation, vol. 3. Canberra, ACT, Australia, pp 2066–2073

    Google Scholar 

  18. Yuan Y, Xu H, Yao X (2016) A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(1):16–37

    Article  Google Scholar 

  19. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  20. Hadka D, Reed P (2013) Borg: An auto-adaptive many-objective evolutionary computing framework. IEEE Evol Comput 21(2):231–259

    Article  Google Scholar 

  21. Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many objective optimization. IEEE Trans Evol Comput 17(5):721–736

    Article  Google Scholar 

  22. Wang G, Jiang H (2007) Fuzzy-dominance and its application in evolutionarymany objective optimization. In: Proceedings of the international conference computer intelligent security workshops. Harbin, China, pp 195–198

    Google Scholar 

  23. He Z, Yen GG, Zhang J (2014) Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE Trans Evol Comput 18(2):269–285

    Article  Google Scholar 

  24. di Pierro F, Khu S-T, Savic DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evol Comput 11(1):17–45

    Article  Google Scholar 

  25. Li M, Zheng J, Li K, Yuan Q, Shen R (2010) Enhancing diversity for average ranking method in evolutionarymany-objective optimization. In: Proceedings of the 11th international conference on parallel problem solving from nature (PPSN). Kraków, Poland, pp 647–656

    Google Scholar 

  26. Zou X, Chen Y, Liu M, Kang L (2008) A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans Syst Man Cybern B Cybern 38(5):1402–1412

    Article  Google Scholar 

  27. Kukkonen S, Lampinen J (2007) Ranking-dominance and many-objectiveoptimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC). Singapore, pp 3983–3990

    Google Scholar 

  28. Asafuddoula M, Tapabrata R, Sarkera R (2015) Decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans Evol Comput 19(3):445–460

    Article  Google Scholar 

  29. While L, Bradstreet L, Barone L (2012) A fast way of calculating exact hyper volumes. IEEE Trans Evol Comput 16(1):86– 95

    Article  Google Scholar 

  30. Brockhoff D, Wagner T, Trautmann H (2012) On the properties of the R2 indicator. In: Proceedings of the 14th annual conference on genetic and evolutionary computation. Philadelphia, PA, USA, pp 465–472

    Google Scholar 

  31. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Proceeding of the parallel problem solving from nature. Springer-Verlag, pp 832–842

    Google Scholar 

  32. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. IEEE Trans Evol Comput 19(1):45–76

    Google Scholar 

  33. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA Multi objectives election based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  34. Gomez RH, Coello CAC (2013) MOMBI: a new metaheuristic formany-objective optimization based on the R2 indicator. In: Proceedings of the IEEE congress on evolutionary computation. Cancún, Mexico, pp 2488–2495

    Google Scholar 

  35. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol.Comput 18 (4):577–601

    Article  Google Scholar 

  36. Cai L, Qu S, Yuan Y, Yao X (2015) A clustering-ranking method for many-objective optimization. Appl Soft Comput 35:681–694

    Article  Google Scholar 

  37. Wang H, Jiao L, Yao X (2015) Two_arch2 An improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541

    Article  Google Scholar 

  38. Yuan Y, Xu H, Wang B, Zhang B, Yao X (2016) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180–198

    Article  Google Scholar 

  39. Padhye N, Bhardawaj P, Deb K (2013) Improving differential evolution through a unified approach. J Global Optim 55(4):771–799

    Article  MathSciNet  MATH  Google Scholar 

  40. Padhye N, Mittal P, Deb K (2015) Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput Optim Appl 62(3):851–890

    Article  MathSciNet  MATH  Google Scholar 

  41. Das I, Dennis J (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optimization 8(3):631–657

    Article  MathSciNet  MATH  Google Scholar 

  42. Deb K, Thiele L, Laumanns M, Zitzler E (2001) Scalable multiobjective optimization test problems. Inst Commun Inf Technol, ETH Zurich, Zurich, Switzerland, TIK Tech Rep 112

  43. Ishibuchi H, Setoguchi Y, Masuda H, Nojima Y (2016) Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE Trans Evol Comput PP(99):1–1

    Google Scholar 

  44. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  MATH  Google Scholar 

  45. Russo LM, Francisco AP (2014) Quick hypervolume. IEEE TransEvol Comput 18(4):481–502

    Article  Google Scholar 

  46. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  47. Ishibuchi H, Hitotsuyanagi Y, Tsukamoto N, Nojima Y (2010) Many-objective test problems to visually examine the behavior of multiobjective evolution ina decision space. In: Proceedings of the international conference on parallel problem solving from nature PPSN, pp 91–100

    Google Scholar 

  48. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(3):617–644

    Article  MATH  Google Scholar 

  49. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans Evol Comput 7(2):117– 132

    Article  Google Scholar 

  50. Wilcoxon F (1945) Individual comparisons by ranking methods Biom Bull 80–83

  51. Deb K, Padhye N (2014) Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57(3):761–794

    Article  MathSciNet  MATH  Google Scholar 

  52. Campigotto P, Passerini A, Battiti R (2014) Active learning of Pareto fronts. IEEE Trans Neural Netw Learn Syst 25(3):506–519

    Article  Google Scholar 

  53. Cheng R, Jin Y, Narukawa K, Sendhoff B (2015) A multiobjective evolutionary algorithm using gaussian process-based inverse modeling. IEEE Trans Evol Comput 19(6):838–856

    Article  Google Scholar 

  54. Rakshit P, Konar A (2015) Extending multi-objective differential evolution for optimization in presence of noise. Inf Sci 305:56–76

    Article  Google Scholar 

  55. Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many objective particle swarm optimization. Inf Sci 374:115–134

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China under Grant No. 61472375 and No. 41571403, Joint Funds of Equipment Pre-Research and Ministry of Education of China under Grant No. 6141A02022320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Dai, G. & Wang, M. Enhanced θ dominance and density selection based evolutionary algorithm for many-objective optimization problems. Appl Intell 48, 992–1012 (2018). https://doi.org/10.1007/s10489-017-0998-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-0998-9

Keywords

Navigation