Skip to main content
Log in

Applying 1-norm SVM with squared loss to gene selection for cancer classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Gene selection methods available have high computational complexity. This paper applies an 1-norm support vector machine with the squared loss (1-norm SVMSL) to implement fast gene selection for cancer classification. The 1-norm SVMSL, a variant of the 1-norm support vector machine (1-norm SVM) has been proposed. Basically, the 1-norm SVMSL can perform gene selection and classification at the same. However, to improve classification performance, we only use the 1-norm SVMSL as a gene selector, and adopt a subsequent classifier to classify the selected genes. We perform extensive experiments on four DNA microarray data sets. Experimental results indicate that the 1-norm SVMSL has a very fast gene selection speed compared with other methods. For example, the 1-norm SVMSL is almost an order of magnitude faster than the 1-norm SVM, and at least four orders of magnitude faster than SVM-RFE (recursive feature elimination), a state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Becker S, Bobin J, Candès E (2009) NESTA: A fast and accurate first-order method for sparse recovery. SIAM J Imaging Sci 4(1):1–39

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett KP (1999) Combining support vector and mathematical programming methods for classification. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel methods: support vector learning. MIT Press, Cambridge, pp 307–326

  3. Bi J, Bennett KP, Embrechts M, Breneman CM, Song M (2003) Dimensionality reduction via sparse support vector machines. J Mach Learn Res 3:1229–1243

    MATH  Google Scholar 

  4. Cao J, Zhang L, Wang B, Li F, Yang J (2015) A fast gene selection method for multi-cancer classification using multiple support vector data description. J Biomed Inform 53(2):381–389

    Article  Google Scholar 

  5. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm

  6. Cui Y, Zheng CH, Yang J, Sha W (2013) Sparse maximum margin discriminant analysis for feature extraction and gene selection on gene expression data. Comput Biol Med 43(7):933–941

    Article  Google Scholar 

  7. Davis G, Mallat S, Avellaneda M (1997) Greedy adaptive approximation. J Construtive Approx 13:57–98

    Article  MATH  Google Scholar 

  8. Demiriz A, Bennett KP, Shawe-Taylor J (2002) Linear programming Boosting via column generation. Mach Learn 46(1):225–254

    Article  MATH  Google Scholar 

  9. Donoho D, Elad M, Temlyakov V (2006) Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inf Theory 52:6–18

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan KB, Rajapakse JC, Wang H, Azuaje F (2005) Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans Nanobioscience 4(3):228–234

    Article  Google Scholar 

  11. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Amer Stat Assoc 97(457):77–87

    Article  MathSciNet  MATH  Google Scholar 

  12. Fung GM, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28:185–202

    Article  MathSciNet  MATH  Google Scholar 

  13. Girosi F (1998) An equivalence between sparse approximation and support vector machines. Neural Comput 10(6):1455–1480

    Article  Google Scholar 

  14. Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing J, Caligiuri M, Bloomfield C, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5436):531–537

    Article  Google Scholar 

  15. Gordon G, Jensen R, Hsiao L, Gullans S, Blumenstock J, Ramaswamy S, Richards W, Sugarbaker D, Bueno R (2002) Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 62(17):4963–4937

    Google Scholar 

  16. Guyon I, Weston J, Barnhill S, Vapink V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1-3):389–422

    Article  MATH  Google Scholar 

  17. Lee C, Leu Y (2011) A novel hybrid feature selection method for microarray data analysis. Appl Soft Comput 11(1):208–213

    Article  Google Scholar 

  18. Li JT, Jia YM, Li WL (2011) Adaptive huberized support vector machine and its application to microarray classification. Neural Comput Appl 20(1):123–132

    Article  Google Scholar 

  19. Li L, Weinberg CR, Darden TA, Pedersen LG (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17 (12):1131–1142

    Article  Google Scholar 

  20. Liu H, Liu L, Zhang H (2010) Ensemble gene selection by grouping for microarray data classification. J Biomed Inform 43(1):81–87

    Article  Google Scholar 

  21. Makh A (2012) GLPK (GNU linear programming kit). http://www.gnu.org/software/glpk/glpk.html

  22. Maldonado S, Montoya R, Lpez J (2017) Embedded heterogeneous feature selection for conjoint analysis: A SVM approach using L1 penalty. Appl Intell 46:775–787

    Article  Google Scholar 

  23. Mangasarian OL (2000) Generalized support vector machines. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 135–146

  24. Mangasarian OL (2006) Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res 7:1517–1530

    MathSciNet  MATH  Google Scholar 

  25. Pomeroy S, Tamayo P, Gaasenbeek M, Sturla L, Angelo M, McLaughlin M, Kim J, Goumnerova L, Black P, Lau C, Allen J, Zagzag D, Olson J, Curran T, Wetmore C, Biegel J, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis D, Mesirov J, Lander E, Golub T (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415 (6870):436–442

    Article  Google Scholar 

  26. Shah S, Kusiak A (2007) Cancer gene search with data-mining and genetic algorithms. Comput Biol Med 37(2):251–261

    Article  Google Scholar 

  27. Shen Q, Mei Z, Ye BX (2009) Simultaneous genes and training samples selection by modified particle swarm optimization for gene expression data classification. Comput Biol Med 39(7):646–649

    Article  Google Scholar 

  28. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203–209

    Article  Google Scholar 

  29. Steinwart I (2003) Sparseness of support vector machines. J Mach Learn Res 4(6):1071–1105

    MathSciNet  MATH  Google Scholar 

  30. Stodden V, Carlin L, David Donoho EA (2007) SparseLab: Seeking sparse solutions to linear systems of equations. http://sparselab.stanford.edu/

  31. Thi HAL, Tao PD, Thiao M (2016) Efficient approaches for L2-L0 regularization and applications to feature selection in SVM. Appl Intell 45(2):1–17

    Google Scholar 

  32. Tropp J, Gilbert A (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theroy 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  33. Van’t Veer LJ, Dai H, van de Vijver M, He Y, Hart A, Mao M, Peterse H, Van der Kooy K, Marton M, Witteveen A, Schreiber G, Kerkhoven R, Roberts C, Linsley P, Bernards R, Friend S (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  34. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  35. Vapnik V (1999) The overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  36. Wang C, Cao L, Miao B (2013) Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data. Comput Stat Data Anal 66(10):140–149

    Article  MathSciNet  Google Scholar 

  37. Wang HQ, Wong HS, Zhu H, Yip TT (2009) A neural network-based biomarker association information extraction approach for cancer classification. J Biomed Inform 42(4):654–666

    Article  Google Scholar 

  38. Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, Vapnik V (2000) Feature selection for SVMs. NIPS 12:668–672

    Google Scholar 

  39. Wong HS, Wang HQ (2008) Constructing the gene regulation-level representation of microarray data for cancer classification. J Biomed Inform 41(1):95–105

    Article  Google Scholar 

  40. Zhang L, Huang X (2015) Multiple SVM-RFE for multi-class gene selection on dna microarray data. In: Proceedings of 2015 international joint conference on neural networks, pp 897–902

  41. Zhang L, Zhou W (2013) Analysis of programming properties and the rowccolumn generation method for 1-norm support vector machines. Neural Netwx 48(12):32–43

    Article  MATH  Google Scholar 

  42. Zhang L, Zhou W, Zhang Z, Yang J (2015) A fast approximation algorithm for 1-norm svm with squared loss. In: Proceedings of 2015 IEEE International Joint Conference on Neural Networks (IJCNN)

  43. Zhang L, Zhou W (2010) On the sparseness of 1-norm support vector machines. Neural Netw 23(3):373–385

    Article  Google Scholar 

  44. Zhang L, Zhou W (2013) A fast algorithm for kernel 1-norm support vector machines. Knowl-Based Syst 52(16):223–235

    Article  Google Scholar 

  45. Zhou W, Zhang L, Jiao L (2002) Linear programming support vector machines. Pattern Recogn 35(12):2927–2936

    Article  MATH  Google Scholar 

  46. Zhou X, Tuck DP (2007) MSVM-RFE: Extensions of SVM-RFE for multi-class gene selection on dna microarray data. Bioinformatics 23(9):1106C1114

    Article  Google Scholar 

  47. Zhu J, Rosset S, Hastie T, Tibshirani R (2004) 1-norm support vector machines. In: Thrun S, Saul L, Schölkopf B (eds) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, pp 49–56

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (grant numbers 61373093, 61672364, and 61672365), by the Natural Science Foundation of Jiangsu Province of China (grant number BK20140008), by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant number 13KJA520001), and by the Soochow Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhou, W., Wang, B. et al. Applying 1-norm SVM with squared loss to gene selection for cancer classification. Appl Intell 48, 1878–1890 (2018). https://doi.org/10.1007/s10489-017-1056-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1056-3

Keywords

Navigation