Skip to main content
Log in

Dynamic reference vectors and biased crossover use for inverse model based evolutionary multi-objective optimization with irregular Pareto fronts

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The recently developed inverse model based multi-objective evolutionary algorithm (IM-MOEA) has been shown to be an effective methodology for solving multi-objective optimization problems (MOPs) with regular Pareto fronts (PFs). Due to the limitations of uniformly distributed reference vectors and inverse model sampling, however, the IM-MOEA is challenged when solving MOPs with irregular PFs. To alleviate these limitations, both an external elitist archive and a biased crossover operator are integrated into the IM-MOEA. The primary role of the former is to dynamically adjust the reference vectors, which encourages the IM-MOEA to explore the sparse regions. The latter is used to improve the search efficiency of the IM-MOEA. By incorporating both features into the IM-MOEA, an enhanced IM-MOEA variant (E-IM-MOEA) is presented in this paper. Experimental studies were conducted on eighteen MOPs with irregular PFs to compare the E-IM-MOEA with six state-of-the-art multi-objective evolutionary algorithms. The experimental results show that the proposed approach has better overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. If fi ≤ 0, we can use fi + M to replace it, where M is an appropriate positive number such that fi + M > 0.

  2. The Matlab codes can be found in http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html

References

  1. Zhou AM, Qu BY, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  2. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems

  3. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  4. Gong MG, Jiao LC, Du HF et al (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2):225–255

    Article  Google Scholar 

  5. Wang HD, Jiao LC, Yao X (2015) Two_Arch2: An improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541

    Article  Google Scholar 

  6. Zhang XY, Tian Y, Cheng R et al (2015) An efficient approach to non-dominated sorting for evolutionary multi-objective optimization. IEEE Trans Evol Comput 19(2):201–213

    Article  Google Scholar 

  7. Li K, Deb K, Zhang QF et al (2017) Efficient nondomination level update method for steady-state evolutionary multiobjective optimization. IEEE Trans Cybern 47(9):2838–2849

    Article  Google Scholar 

  8. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. Parallel Problem Solving from Nature-PPSN VIII. Lect Notes Comput Sci 3242:832–842

    Article  Google Scholar 

  9. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  10. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  11. Tian Y, Cheng R, Zhang XY et al (2017) An indicator based multi-objective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2017.2749619

  12. Zhang QF, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  13. Ma XL, Liu F, Qi YT et al (2014) MOEA/D with Baldwinian learning inspired by the regularity property of continuous multi-objective problem. Neurocomputing 145(5):336–352

    Article  Google Scholar 

  14. Qi YT, Ma XL, Liu F et al (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22 (2):231–264

    Article  Google Scholar 

  15. Gong MG, Li H, Lu EH et al (2017) A multiobjective cooperative coevolutionary algorithm for hyperspectral sparse unmixing. IEEE Trans Evol Comput 21(2):234–248

    Article  Google Scholar 

  16. Wang ZK, Zhang QF, Zhou AM et al (2016) Adaptive replacement strategies for MOEA/D. IEEE Trans Cybern 46(2):474–486

    Article  Google Scholar 

  17. Cheng R, Jin YC, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791

    Article  Google Scholar 

  18. Wang R, Zhang Q, Zhang T (2016) Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans Evol Comput 20(6):821–837

    Article  Google Scholar 

  19. Zhang QF, Zhou AM, Jin YC (2008) RM-MEDA: a regularity model based multi-objective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1):41–63

    Article  Google Scholar 

  20. Wang Y, Xiang J, Cai ZX (2012) A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator. Appl Soft Comput 12(11):3526– 3538

    Article  Google Scholar 

  21. Li YY, Xu X, Li P et al (2014) Improved RM-MEDA with local learning. Soft Comput 18(7):1383–1397

    Article  Google Scholar 

  22. Zhou AM, Zhang QF, Jin YC et al (2007) Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 617–623

  23. Wang HD, Zhang QF et al (2016) Regularity model for noisy multiobjective optimization. IEEE Trans Cybern 46(9):1997–2009

    Article  Google Scholar 

  24. Cheng R, Jin YC, Narukawa K et al (2015) A multiobjective evolutionary algorithm using Gaussian process based inverse modeling. IEEE Trans Evol Comput 19(6):761–856

    Article  Google Scholar 

  25. Cornell JA (2011) Experiments with mixtures: designs, models, and the analysis of mixture data. Wiley, New York

    Book  Google Scholar 

  26. Rasmussen CE (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  27. Cheng R, Jin YC, Narukawa K (2015) Adaptive reference vector generation for inverse model based evolutionary multi-objective optimization with degenerate and disconnected Pareto fronts. Lect Notes Comput Sci 9018:127–140

    Article  Google Scholar 

  28. Kukkonen S, Deb K (2006) A fast and effective method for pruning of non-dominated solutions in many-objective problems. In: Proceedings of the 9th International Conference on Parallel Problem Solving from Nature (PPSN-IX), Lecture Notes in Computer Science, Reykjavik, Iceland, vol 4193, pp 553– 562

  29. Deb K (2002) Multi-objective optimization using evolutionary algorithms. Wiley, New York. ISBN:047187339X

    MATH  Google Scholar 

  30. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems (Second Edition). Springer, New York. ISBN:9780387332543

    MATH  Google Scholar 

  31. Cai D, Wang Y (2014) A new multiobjective evolutionary algorithm based on decomposition of the objective space for multiobjective optimization. J Appl Math 2014:906147

    MathSciNet  Google Scholar 

  32. Chow CK, Yuen SY (2012) A multi-objective evolutionary algorithm that diversifies population by its density. IEEE Trans Evol Comput 16(2):149–172

    Article  Google Scholar 

  33. Zhang H, Zhou AM, Song SM et al (2016) A self-organizing multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(5):792–806

    Article  Google Scholar 

  34. Tian Y, Cheng R, Zhang XY et al (2017) PlatEMO: a MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine. (in press)

  35. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 12(2):284–302

    Article  Google Scholar 

  36. Liu HL, Gu FQ, Zhang QF (2014) Decomposition of a multi-objective optimization probleminto a number of simple multi-objective subproblems. IEEE Trans Evol Comput 18(3):450–455

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. R. Cheng, Dr. Y. Wang, Prof. Y. C. Jin, Prof. Q. F. Zhang, and Prof. H. L. Liu for selflessly providing the source codes of IM-MOEA, IRM-MEDA, RM-MEDA, MOEA/D-DE, and MOEA/D-M2M, respectively. This work is partly supported by the National Natural Science Foundation of China under Grant 61174101, Key Project of Shaanxi Key Research and Development Program under Grant 2018YFZDGY0084, Research Program of Shaanxi Modern Equipment Green Manufacturing Co-innovation Center under Grant 304-210891704, Distinctive Research Program of Xi’an University of Technology under Grant 2016TS023, and Research Program of Shaanxi Provincial Education Department under Grant 2017JS088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Liu, H. & Jiang, Q. Dynamic reference vectors and biased crossover use for inverse model based evolutionary multi-objective optimization with irregular Pareto fronts. Appl Intell 48, 3116–3142 (2018). https://doi.org/10.1007/s10489-017-1133-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1133-7

Keywords

Navigation