Skip to main content
Log in

A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

There are many diverse fields and applications such as data mining, engineering, operations research, economics, and science can be formulated as multi-objective optimization problems. In this paper, we describe and propose a novel and a useful multi-objective artificial algae algorithm (MO-AAA) to solve multi-objective engineering design problems. Our proposed algorithm, (MO-AAA), is based on the search technique of artificial algae algorithm(AAA) algorithm. MO-ADA applies the elitist non-dominated sorting and crowding distance approach to preserve the diversity among the optimal set of solutions and obtains various non-domination levels, respectively. Also, we evaluate the effectiveness of the proposed algorithm by applying it on different multi-objective benchmark problems (20 challenging benchmark problems from CEC 2009 for unconstrained and constrained multi-objective optimization problems) and engineering design benchmark problems with distinctive features. Finally, our results show that MO-AAA efficiently generates the Pareto front and is easy to implement, promising and competitive compared to other state-of-the-art algorithms considered in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Agrawal S, Dashora Y, Tiwari MK, Son YJ (2008) Interactive particle swarm: a Pareto-adaptive metaheuristic to multiobjective optimization. IEEE Trans Syst Man Cybern Syst Hum 38(2):258–277

    Article  Google Scholar 

  2. Agrell PJ, Lence BJ, Stam A (1998) An interactive multicriteria decision model for multipurpose reservoir management: the shellmouth reservoir. J Multi-Criteria Decis Anal 7:61–86

    Article  MATH  Google Scholar 

  3. Ahrari A, Atai AA (2010) Grenade explosion method—a novel tool for optimization of multimodal functions. Appl Soft Comput 10(4):1132–1140

    Article  Google Scholar 

  4. Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52

    Article  Google Scholar 

  5. Andersson J (2000) A survey of multiobjective optimization in engineering design. Department of Mechanical Engineering, Linkoping University, Linkoping Sweden, Technical Report No: LiTH-IKP

  6. Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3(1):69–85

    Article  Google Scholar 

  7. Aydin I, Karakose M, Akin E (2011) A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl Soft Comput 11(1):120–129

    Article  Google Scholar 

  8. Bandaru S, Ng AH, Deb K (2017) Data mining methods for knowledge discovery in multi-objective optimization: part A-survey. Expert Syst Appl 70:139–159

    Article  Google Scholar 

  9. Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3):269–283

    Article  Google Scholar 

  10. Bérubé JF, Gendreau M, Potvin JY (2009) An exact ε-constraint method for bi-objective combinatorial optimization problems: application to the traveling salesman problem with Profits. Eur J Oper Res 194(1):39–50

    Article  MathSciNet  MATH  Google Scholar 

  11. Coello CAC, Lechuga MS (2002) MOPSO: A Proposal for multiple objective particle swarm optimization. In: Proceedings of the congress on evolutionary computation (CEC’2002), Honolulu, HI, vol 1, pp 1051–1056

  12. Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, vol 242. Kluwer Academic, New York

    Book  MATH  Google Scholar 

  13. Coello CC (2000) Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol 1. IEEE, pp 30–37

  14. Coello CC, Pulido GT, Montes EM (2005) Current and future research trends in evolutionary multiobjective optimization. In: Information processing with evolutionary algorithms. Springer, London, pp 213–231

  15. Corne D, Jerram NR, Knowles J, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc., pp 283–290

  16. Daneshyari M, Yen GG (2008) Cultural MOPSO: a cultural framework to adapt parameters of multiobjective particle swarm optimization. In: 2008 Congress on Evolutionary Computation (CEC’2008). IEEE Service Center, Hong Kong, pp 1325–1332

  17. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

    MATH  Google Scholar 

  18. Deb K, Padhye N (2014) Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57(3):761–794

    Article  MathSciNet  MATH  Google Scholar 

  19. Deb K, Agrawal S, Pratab A, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  20. Dorigo M (1992) Optimization, learning and natural algorithms. Ph. D Thesis, Politecnico di Milano, Italy

    Google Scholar 

  21. Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  22. Ehrgott M, Ryan DM (2002) Constructing robust crew schedules with bicriteria optimization. J Multi-Criteria Decis Anal 11:139–150

    Article  MATH  Google Scholar 

  23. Ehrgott M, Klamroth K, Schwehm S (2004) An MCDM approach to portfolio optimization. Eur J Oper Res 155:752–77

    Article  MathSciNet  MATH  Google Scholar 

  24. Ehrgott M, Gandibleux X (2002) Multiobjective combinatorial optimization—theory, methodology, and applications. In: Multiple criteria optimization: State of the art annotated bibliographic surveys. Springer, US, pp 369–444

  25. Ehrgott M, Gandibleux X (2004) Approximative solution methods for multiobjective combinatorial optimization. Top 12(1):1–63

    Article  MathSciNet  MATH  Google Scholar 

  26. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  27. Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129(3):210–225

    Article  Google Scholar 

  28. Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine learning. Physica D 22(1):187–204

    Article  MathSciNet  Google Scholar 

  29. Figueira J, Greco S, Ehrgott M (eds) (2005) Multiple criteria decision analysis: state of the art surveys. Kluwer, New York

  30. Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms, San Mateo, USA, pp 416–423

  31. Gal T, Hanne T (1997) On the development and future aspects of vector optimization and MCDM. A tutorial. In: Climaco J (ed) Multicriteria analysis. Proceedings of the XIth International Conference on MCDM. Springer, Berlin, pp 130–145

  32. Goicoechea A, Hansen DR, Duckstein L (1982) Multiobjective decision analysis with engineering and business applications. Wiley, New York

    MATH  Google Scholar 

  33. Gong M, Jiao L, Du H, Bo L (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2):225–255

    Article  Google Scholar 

  34. Holland JH (1975) Adaption in natural and artificial systems. The University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  35. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, Piscataway, USA, pp 82–87

  36. Jamuna K, Swarup KS (2012) Multi-objective biogeography based optimization for optimal PMU placement. Appl Soft Comput 12(5):1503–1510

    Article  Google Scholar 

  37. Jaszkiewicz A, Ishibuchi H, Zhang Q (2012) Multiobjectivememetic algorithms. In: Handbook of Memetic Algorithms. Springer, Berlin, pp 201–217

  38. Küfer KH, Scherrer A, Monz M, Trinkaus F, Alonso H, Bortfeld T, Thieke C (2003) Intensity-modulated radiotherapy - a large scale multi-criteria programming problem. OR Spectrum 25:223–249

    Article  MATH  Google Scholar 

  39. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  40. Kaveh A (2014) Charged system search algorithm. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer International Publishing, pp 41–85

  41. Kennedy V, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp 1942–1948

  42. Knowles J, Corne D (1999) The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol 1. IEEE, pp 98–105

  43. Krishnanand KR, Panigrahi BK, Rout PK, Mohapatra A (2011) Application of multi-objective teaching-learning-based algorithm to an economic load dispatch problem with incommensurable objectives. In: Swarm, Evolutionary, and Memetic Computing. Springer, Berlin, pp 697–705

  44. Laumanns M, Thiele L, Zitzler E (2006) An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur J Oper Res 169(3):932–942

    Article  MathSciNet  MATH  Google Scholar 

  45. Lei D (2009) Multi-objective production scheduling: a survey. Int J Adv Manuf Technol 43(9-10):926–938

    Article  Google Scholar 

  46. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/d and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  47. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Applic 24(7-8):1867–1877

    Article  Google Scholar 

  48. Luna F, Durillo JJ, Nebro AJ, Alba E (2010) Evolutionary algorithms for solving the automatic cell planning problem: a survey. Eng Optim 42(7):671–690

    Article  MATH  Google Scholar 

  49. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395

    Article  MathSciNet  MATH  Google Scholar 

  50. Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213(2):455–465

    MathSciNet  MATH  Google Scholar 

  51. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics 1(4):355–366

    Article  Google Scholar 

  52. Miettinen K (2012) Nonlinear multiobjective optimization. Springer, Berlin

    MATH  Google Scholar 

  53. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  54. Mondal S, Bhattacharya A, nee Dey SH (2013) Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int J Electr Power Energy Syst 44 (1):282–292

    Article  Google Scholar 

  55. Moslehi G, Mahnam M (2011) A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search. Int J Prod Econ 129(1):14–22

    Article  Google Scholar 

  56. Mostaghim S, Teich J (2004) Covering pareto-optimal fronts by subswarms in multi-objective particle swarm optimization. In: Congress on Evolutionary Computation, 2004. CEC2004, vol 2. IEEE, pp 1404–1411

  57. Nikoofard AH, Hajimirsadeghi H, Rahimi-Kian A, Lucas C (2012) Multiobjective invasive weed optimization: Application to analysis of Pareto improvement models in electricity markets. Appl Soft Comput 12 (1):100–112

    Article  Google Scholar 

  58. Omkar SN, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishnan S (2011) Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. Appl Soft Comput 11(1):489–499

    Article  Google Scholar 

  59. Padhye N, Bhardawaj P, Deb K (2013) Improving differential evolution through a unified approach. J Glob Optim 55(4):771

    Article  MathSciNet  MATH  Google Scholar 

  60. Padhye N, Mittal P, Deb K (2015) Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput Optim Appl 62(3):851–890

    Article  MathSciNet  MATH  Google Scholar 

  61. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52–67

    Article  MathSciNet  Google Scholar 

  62. Patel V, Savsani V (2014) A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Information Sciences

  63. Patel V, Savsani V (2015) Heat Transfer Search (HTS): a novel optimization algorithm. Inf Sci 324:217–246

    Article  Google Scholar 

  64. Patel V, Savsani V (2016) A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Inf Sci 357:182–200

    Article  Google Scholar 

  65. Pradhan PM, Panda G (2012) Solving multiobjective problems using cat swarm optimization. Expert Syst Appl 39(3):2956–2964

    Article  Google Scholar 

  66. Rao RV, Savsani V, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  67. Rao RV, Savsani V, Vakharia DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15

    Article  MathSciNet  Google Scholar 

  68. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci 179 (13):2232–2248

    Article  MATH  Google Scholar 

  69. Reyes-Sierra M, Coello CC (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  70. Roy PK, Ghoshal SP, Thakur SS (2010) Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Syst Appl 37(12):8221–8228

    Article  Google Scholar 

  71. Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput 27:279–298

    Article  Google Scholar 

  72. Savsani P, Savsani V (2016) Passing Vehicle Search (PVS): a novel metaheuristic algorithm. Appl Math Model 40:3951–3978

    Article  Google Scholar 

  73. Savsani P, Jhala RL, Savsani V (2014) Effect of hybridizing Biogeography-Based Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony Optimization (ACO). Appl Soft Comput 21:542–553

    Article  Google Scholar 

  74. Schaffer JD (1985) Some experiments in machine learning using vector evaluated genetic algorithms. Vanderbilt University, Nashville

    Google Scholar 

  75. Schniederjans MJ, Hollcroft E (2005) A multi-criteria modeling approach to jury selection. Socio Econ Plan Sci 39:81–102

    Article  Google Scholar 

  76. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search algorithm. Appl Soft Comput 36:315–333

    Article  Google Scholar 

  77. Silverman J, Steuer RE, Whisman AW (1988) A multi-period, multiple criteria optimization system for manpower planning. Eur J Oper Res 34:160–170

    Article  Google Scholar 

  78. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  79. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  80. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  81. Tan KC, Goh CK, Mamun AA, Ei EZ (2008) An evolutionary artificial immune system for multi-objective optimization. Eur J Oper Res 187(2):371–392

    Article  MathSciNet  MATH  Google Scholar 

  82. Tapia MGC, Coello CAC (2007) Applications of multi-objective evolutionary algorithms in economics and finance: a survey. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007. IEEE, pp 532–539

  83. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Article  Google Scholar 

  84. Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci 179(12):1944–1959

    Article  MathSciNet  Google Scholar 

  85. Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci 179(12):1944–1959

    Article  MathSciNet  Google Scholar 

  86. Yagmahan B, Yenisey MM (2008) Ant colony optimization for multi-objective flow shop scheduling problem. Comput Ind Eng 54(3):411–420

    Article  Google Scholar 

  87. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin, pp 169–178

  88. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

  89. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274

    Article  Google Scholar 

  90. Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29(2):175–184

    Article  Google Scholar 

  91. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1 (4):330–343

    MATH  Google Scholar 

  92. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40 (6):1616–1624

    Article  MathSciNet  MATH  Google Scholar 

  93. Yazdani M, Jolai F (2015) Lion Optimization Algorithm (LOA): a nature-inspired metaheuristic algorithm. Journal of Computational Design and Engineering

  94. Zhang H, Zhu Y, Zou W, Yan X (2012) A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production. Appl Math Model 36(6):2578–2591

    Article  MATH  Google Scholar 

  95. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  96. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report

  97. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  98. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications zurich ETH. Swiss Federal Institute of Technology, Switzerland

    Google Scholar 

  99. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  100. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature. Springer, Berlin, pp 832–842

  101. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001 – evolutionary methods for design optimisation and control with applications to industrial problems, Barcelona, Spain

Download references

Acknowledgments

We are thankful to the editor-in-chief and referees for their insightful and constructive comments and suggestions that significantly improved the clarity of the paper. The research of the 1st author is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). The postdoctoral fellowship of the 2nd author is supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Tawhid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawhid, M.A., Savsani, V. A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems. Appl Intell 48, 3762–3781 (2018). https://doi.org/10.1007/s10489-018-1170-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1170-x

Keywords

Navigation