Skip to main content
Log in

A meta-heuristic for topology optimization using probabilistic learning

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Topological shape optimization consists in finding the optimal shape of a mechanical structure by means of a process for removing or inserting new holes and structural elements, that is to say, using a process which produces topological changes. This article introduces a method for automated topological optimization via an Estimation of Distribution Algorithm (EDA), a global optimization meta-heuristic based on probabilistic learning, which requires of neither user initialization, nor a priori information or design bias in the algorithm. We propose a representation and solution mapping which favors feasible structures and requires a, relatively, low dimensionality (some hundreds), the probabilistic model learns from finite element evaluations to generate well-performed structures. The EDA for topology optimization (EDATOP) is compared with an algorithm, in the state of the art, specially designed to address this problem, demonstrating that our approach is useful for solving real-world problems, escapes from local optima, and delivers better solutions than the comparing algorithm which uses problem knowledge, with a payoff on the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53. https://doi.org/10.1016/j.cma.2014.08.028

    Article  MathSciNet  Google Scholar 

  2. Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194:3269–3290. https://doi.org/10.1016/j.cma.2004.12.018

    Article  MathSciNet  Google Scholar 

  3. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Math 334:1125–1130

    Article  MathSciNet  Google Scholar 

  4. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393. https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  Google Scholar 

  5. Balamurugan R, Ramakrishnan C, Singh N (2008) Performance evaluation of a two stage adaptive genetic algorithm (tsaga) in structural topology optimization. Appl Soft Comput 8:1607–1624

    Article  Google Scholar 

  6. Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202. https://doi.org/10.1007/BF01650949

    Article  Google Scholar 

  7. Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  8. Blank L, Farshbaf-Shaker MH, Garcke H, Rupprecht C, Styles V (2014) Multi-material phase field approach to structural topology optimization. In: Trends in PDE constrained optimization. Springer, pp 231–246

  9. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control. Optim Calc Var 9:19–48

    Article  MathSciNet  Google Scholar 

  10. Bureerat S, Limtragool J (2006) Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem Anal Des 42:547–566

    Article  MathSciNet  Google Scholar 

  11. Bureerat S, Limtragool J (2008) Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem Anal Des 44:738–747. https://doi.org/10.1016/j.finel.2008.04.002

    Article  Google Scholar 

  12. Chen T, Chiou Y (2013) Structural topology optimization using genetic algorithms. In: Proceedings of the world congress on engineering, vol 3, pp 3–5

  13. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38. https://doi.org/10.1007/s00158-013-0956-z

    Article  MathSciNet  Google Scholar 

  14. Deb K, Tiwari S (2005) Omni-optimizer: a procedure for single and multi-objective optimization. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Springer Berlin Heidelberg, Berlin, pp 47–61

    Google Scholar 

  15. Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  16. Garcia-Lopez NP, Sanchez-Silva M, Medaglia AL, Chateauneuf A (2013) An improved robust topology optimization approach using multiobjective evolutionary algorithms. Comput Struct 125:1–10. https://doi.org/10.1016/j.compstruc.2013.04.025

    Article  Google Scholar 

  17. Ghabraie K (2015) The eso method revisited. Struct Multidiscip Optim 51(6):1211–1222. https://doi.org/10.1007/s00158-014-1208-6

    Article  MathSciNet  Google Scholar 

  18. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  19. Guan-Chun L, Chun-Yi L, Yu-Shu L (2011) A binary particle swarm optimization for continuum structural topology optimization. Appl Soft Comput 11(2):2833–2844

    Article  Google Scholar 

  20. Hansel W, Treptow A, Becker W, Freisleben B (2002) A heuristic and a genetic topology optimization algorithm for weight-minimal laminate structures. Compos Struct 58:287–294

    Article  Google Scholar 

  21. Hansel W, Treptow A, Becker W, Freisleben B (2002) A heuristic and a genetic topology optimization algorithm for weight-minimal laminate structures. Compos Struct 58(2):287–294

    Article  Google Scholar 

  22. Haslinger J et al (2003) Introduction to shape optimization: theory, approximation, and computation, vol 7. SIAM

  23. Hassani B, Hinton E (1998) A review of homogenization and topology opimization II–analytical and numerical solution of homogenization equations. Comput Struct 69(6):719–738

    Article  Google Scholar 

  24. Hassani B, Hinton E (1998) A review of homogenization and topology optimization I–homogenization theory for media with periodic structure. Comput Struct 69(6):707–717

    Article  Google Scholar 

  25. Huang X, Xie Y (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, Hoboken

    Book  Google Scholar 

  26. Jeong SH, Choi DH, Yoon GH (2014) Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials. Finite Elem Anal Des 82:16–31. https://doi.org/10.1016/j.finel.2013.12.003

    Article  MathSciNet  Google Scholar 

  27. Jeong SH, Park SH, Choi DH, Yoon GH (2013) Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information. Comput Math Appl 66(6):1065–1081

    Article  MathSciNet  Google Scholar 

  28. Kaveh A, Hassani B, Shojaee S, Tavakkoli S (2008) Structural topology optimization using ant colony methodology. Eng Struct 30(9):2559–2565

    Article  Google Scholar 

  29. Kutuk MA, Gov I (2013) A finite element removal method for 3d topology optimization. Advances in Mechanical Engineering 2013(413463). https://doi.org/10.1155/2013/413463

    Article  Google Scholar 

  30. Luh GC, Lin CY (2009) Structural topology optimization using ant colony optimization algorithm. Appl Soft Comput 9(4):1343–1353

    Article  Google Scholar 

  31. Noilublao N, Bureerat S (2013) Simultaneous topology, shape, and sizing optimisation of plane trusses with adaptive ground finite elements using MOEAs. Math Probl Eng 2013(2013):10. https://doi.org/10.1155/2013/838102

    Google Scholar 

  32. Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces, vol 153. Springer Science & Business Media

  33. Radman A (2013) Bi-directional evolutionary structural optimization (beso) for topology optimization of material’s microstructure. Ph.D. thesis, RMIT University

  34. Shin H, Todoroki A, Hirano Y (2013) Elite-initial population for efficient topology optimization using multi-objective genetic algorithms. Int J Aeronaut Space Sci 14(4):324–333

    Article  Google Scholar 

  35. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21:120–127

    Article  Google Scholar 

  36. Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498. https://doi.org/10.1016/S0045-7825(02)00464-4

    Article  Google Scholar 

  37. Valdez SI, Botello S, Ochoa MA, Marroquín JL, Cardoso V (2017) Topology optimization benchmarks in 2d: Results for minimum compliance and minimum volume in planar stress problems. Arch Comput Methods Eng 24(4):803–839. https://doi.org/10.1007/s11831-016-9190-3

    Article  MathSciNet  Google Scholar 

  38. Valdez SI, Hernández A, Botello S (2013) A boltzmann based estimation of distribution algorithm. Inform Sci 236:126–137. https://doi.org/10.1016/j.ins.2013.02.040

    Article  MathSciNet  Google Scholar 

  39. Valdez-Peña SI, Hernández-Aguirre A, Botello-Rionda S (2009) Approximating the search distribution to the selection distribution in edas. In: Proceedings of the 11th annual conference on genetic and evolutionary computation, GECCO ’09. https://doi.org/10.1145/1569901.1569965. ACM, New York, pp 461–468

  40. Wang S, Tai K (2004) Graph representation for structural topology optimization using genetic algorithms. Comput Struct 82(20):1609–1622

    Article  MathSciNet  Google Scholar 

  41. Wang SY, Wang MY (2006) An enhanced genetic algorithm for structural topology optimization. Int J Numer Methods Eng 65:18–44. https://doi.org/10.1002/nme.1435

    Article  Google Scholar 

  42. Wang Y, Kang Z, He Q (2014) Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct 135:50–61. https://doi.org/10.1016/j.compstruc.2014.01.008

    Article  Google Scholar 

  43. Wang Y, Kang Z, He Q (2014) Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct 135:50–61

    Article  Google Scholar 

  44. Xie Y, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49 (5):885–896

    Article  Google Scholar 

  45. Xu H, Guan L, Chen X, Wang L (2013) Guide-weight method for topology optimization of continuum structures including body forces. Finite Elem Anal Des 75:38–49

    Article  MathSciNet  Google Scholar 

  46. Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891. https://doi.org/10.1016/j.cma.2010.05.013

    Article  MathSciNet  Google Scholar 

  47. Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101:744–773. https://doi.org/10.1002/nme.4826

    Article  MathSciNet  Google Scholar 

  48. Zhao J, Wang C (2014) Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Comput Methods Appl Mech Eng 272:204–218. https://doi.org/10.1016/j.cma.2014.01.018

    Article  MathSciNet  Google Scholar 

  49. Zhu B, Zhang X, Fatikow S (2015) Structural topology and shape optimization using a level set method with distance-suppression scheme. Comput Methods Appl Mech Eng 283:1214–1239. https://doi.org/10.1016/j.cma.2014.08.017

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ivvan Valdez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez, S.I., Marroquín, J.L., Botello, S. et al. A meta-heuristic for topology optimization using probabilistic learning. Appl Intell 48, 4267–4287 (2018). https://doi.org/10.1007/s10489-018-1215-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1215-1

Keywords