Skip to main content
Log in

A spatio-semantic approach to reasoning about agricultural processes

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how to model such relations in the generic semantic mapping framework SEMAP. We describe how SEMAP’s core ontology is extended to represent knowledge about the involved machines and facilities in a typical agricultural domain. In the framework we combine different information layers – semantically annotated spatial data, semantic background knowledge and incoming sensor data – to derive qualitative spatial facts and continuously track them to generate process states and events about the ongoing logistic process of a harvesting campaign, which adds to an increased process understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amiama C, Pereira JM, Castro A, Bueno J (2015) Modelling corn silage harvest logistics for a cost optimization approach. Comput Electron Agric 118:56–65

    Article  Google Scholar 

  2. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2009) C-sparql: Sparql for continuous querying. In: Proceedings of the 18th international conference on World wide web. ACM, pp 1061–1062

  3. Batsakis S, Petrakis EG, Tachmazidis I, Antoniou G (2017) Temporal representation and reasoning in owl 2. Semant Web 8(6):981–1000

    Article  Google Scholar 

  4. Bechhofer S (2009) Owl: Web ontology language. In: Encyclopedia of database systems. Springer, pp 2008–2009

  5. Borrmann A, Rank E (2008) Topological operators in a 3d spatial query language for building information models. In: Proceedings of the 12th International conference on computing in civil and building engineering (ICCCBE)

  6. Daniele L, Ferreira Pires L (2013) An ontological approach to logistics. In: Enterprise interoperability, research and applications in the service-oriented ecosystem, IWEI 13. ISTE Ltd. Wiley

  7. Deeken H, Wiemann T, Hertzberg J (2018) Grounding semantic maps in spatial databases. Robot Auton Syst 105:146–165

    Article  Google Scholar 

  8. Dury J, Garcia F, Reynaud A, Bergez JE (2013) Cropping-plan decision-making on irrigated crop farms: a spatio-temporal analysis. Eur J Agron 50:1–10

    Article  Google Scholar 

  9. Garbacz P, Trypuz R (2017) Representation of tensed relations in owl. In: Research conference on metadata and semantics research. Springer, pp 62–73

  10. Hoxha J, Scheuermann A, Bloehdorn S (2010) An approach to formal and semantic representation of logistics services. In: 19th European conference on artificial intelligence (ECAI 2010) Proceedings of the Workshop on Artificial Intelligence and Logistics (AILog), Lisbon, pp 73–78

  11. Kaloxylos A, Groumas A, Sarris V, Katsikas L, Magdalinos P, Antoniou E, Politopoulou Z, Wolfert S, Brewster C, Eigenmann R et al (2014) A cloud-based farm management system: Architecture and implementation. Comput Electron Agric 100:168–179

    Article  Google Scholar 

  12. Kostavelis I, Gasteratos A (2015) Semantic mapping for mobile robotics tasks: a survey. Robot Auton Syst 66:86–103

    Article  Google Scholar 

  13. Lauer J, Richter L, Ellersiek T, Zipf A (2014) Teleagro+: Analysis framework for agricultural telematics data. In: 7Th ACM SIGSPATIAL international workshop on computational transportation science, IWCTS ’14. ACM, pp 47–53

  14. Mark TB, Whitacre B, Griffin T et al (2015) Assessing the value of broadband connectivity for big data and telematics: Technical efficiency. In: 2015 annual meeting. Southern Agricultural Economics Association, Georgia

  15. Nüchter A, Hertzberg J (2008) Towards semantic maps for mobile robots. Robotics and Autonomous Systems

  16. Pfeiffer D, Blank S (2015) Real-time operator performance analysis in agricultural equipment. In: 73rd international conference on agricultural engineering (AgEng), pp 6–7

  17. Sørensen CG, Nielsen V (2005) Operational analyses and model comparison of machinery systems for reduced tillage. Biosyst Eng 92(2):143–155

    Article  Google Scholar 

  18. Steinberger G, Rothmund M, Auernhammer H (2009) Mobile farm equipment as a data source in an agricultural service architecture. Comput Electron Agric 65(2):238–246

    Article  Google Scholar 

  19. Wolter D, Wallgrün JO (2010) Qualitative spatial reasoning for applications: New challenges and the sparq toolbox. IGI Global

Download references

Acknowledgments

Work by Deeken is supported by the German Federal Ministry of Education and Research in the SOFiA project (Grant No. 01FJ15028). Work by Wiemann is supported by the German Federal Ministry of Education and Research within the framework of the BonaRes-initiative, project SoilAssist2 (Grant No. 031B0684D). The DFKI Osnabrück branch is supported by the state of Niedersachsen (VW-Vorab).

The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Deeken.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeken, H., Wiemann, T. & Hertzberg, J. A spatio-semantic approach to reasoning about agricultural processes. Appl Intell 49, 3821–3833 (2019). https://doi.org/10.1007/s10489-019-01451-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01451-2

Keywords

Navigation