Skip to main content
Log in

A synthesis approach of fast robust MPC with RBF-ARX model to nonlinear system with uncertain steady status information

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The mechanical model of a plant in real industry is usually difficult to obtain. This paper integrates the data-driven RBF-ARX modeling method and a fast Robust Model Predictive Control (RMPC) approach to achieving output-tracking control of a nonlinear system with unknown steady status information. Considering the large online computational burden of online RMPC, this paper proposes a RBF-ARX model-based efficient robust predictive control (RBF-ARX-ERPC) approach. First, based on the RBF-ARX model, a polytopic uncertain linear parameter varying (LPV) state-space model is built to represent the dynamic behavior of the system; next, two convex polytopic sets are constructed to wrap the globally nonlinear behavior of the system. Then, an optimization problem including several linear matrix inequalities (LMIs) is formulated, which is solved offline to synthesize a sequence of explicit control laws corresponding to a sequence of asymptotically stable invariant ellipsoids in the state space, of which all the optimization results are stored in a look-up table. For the real-time control online, it only involves simple state-vector computation and bisection search. Two simulation examples, i.e. the modeling and control of a widely used continuously stirred tank reactor (CSTR) and a linear one-stage inverted pendulum (LOSIP) system, and the real-time control experiments on an actual LOSIP plant are provided to demonstrate the effectiveness of the proposed RBF-ARX model-based efficient RPC approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Mayne DQ (2014) Model predictive control: recent developments and future promise. Automatica 50(12):2967–2986

    Article  MathSciNet  Google Scholar 

  2. Kothare MV, Balakrishnan V, Morari M (1996) Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10):1361–1379

    Article  MathSciNet  Google Scholar 

  3. Cuzzola FA, Geromel JC, Morari M (2002) An improved approach for constrained robust model predictive control. Automatica 38(7):1183–1189

    Article  MathSciNet  Google Scholar 

  4. Mao WJ (2003) Robust stabilization of uncertain time-varying discrete systems and comments on “an improved approach for constrained robust model predictive control”. Automatica 39(6):1109–1112

    Article  MathSciNet  Google Scholar 

  5. Wada N, Saito K, Saeki M (2006) Model predictive control for linear parameter varying systems using parameter dependent Lyapunov function. IEEE Trans Circuits Syst Express Briefs 53(12):1446–1450

    Article  Google Scholar 

  6. Ghaffari V, Naghavi SV, Safavi AA (2013) Robust model predictive control of a class of uncertain nonlinear systems with application to typical CSTR problems. J Process Control 23(4):493–499

    Article  Google Scholar 

  7. Ding B (2010) Constrained robust model predictive control via parameter-dependent dynamic output feedback. Automatica 46(9):1517–1523

    Article  MathSciNet  Google Scholar 

  8. Ding B, Zou T (2014) A synthesis approach for output feedback robust model predictive control based-on input-output model. J Process Control 24(3):60–72

    Article  Google Scholar 

  9. Gritli H, Belghith S (2018) Robust feedback control of the underactuated inertia wheel inverted pendulum under parametric uncertainties and subject to external disturbances: LMI formulation. J Frankl Inst 355(18):9150–9191

    Article  MathSciNet  Google Scholar 

  10. Jiang N, Xiong J, Lam J (2016) Robust stabilisation of time-varying delay systems with probabilistic uncertainties. Int J Syst Sci 47(12):3016–3026

    Article  MathSciNet  Google Scholar 

  11. Wan Z, Kothare MV (2003) An efficient off-line formulation of robust model predictive control using linear matrix inequalities. Automatica 39(5):837–846

    Article  MathSciNet  Google Scholar 

  12. Kouvaritakis B, Rossiter JA, Schuurmans J (2000) Efficient robust predictive control. IEEE Trans Autom Control 45(8):1545–1549

    Article  MathSciNet  Google Scholar 

  13. Imsland L, Bar N, Foss BA (2005) More efficient predictive control. Automatica 41(8):1395–1403

    Article  MathSciNet  Google Scholar 

  14. Ding B, Xi Y, Cychowski MT, O’Mahony T (2007) Improving off-line approach to robust MPC based-on nominal performance cost. Automatica 43(1):158–163

    Article  MathSciNet  Google Scholar 

  15. Angeli D, Casavola A, Franzè G, Mosca E (2008) An ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems. Automatica 44(12):3113–3119

    Article  MathSciNet  Google Scholar 

  16. Bumroongsri P, Kheawhom S (2012) An ellipsoidal off-line model predictive control strategy for linear parameter varying systems with applications in chemical processes. Syst Control Lett 61(3):435–442

    Article  MathSciNet  Google Scholar 

  17. Bumroongsri P, Kheawhom S (2012) An off-line robust MPC algorithm for uncertain polytopic discrete-time systems using polyhedral invariant sets. J Process Control 22(6):975–983

    Article  Google Scholar 

  18. Casavola A, Famularo D, Franzè G, Garone E (2012) A fast ellipsoidal MPC scheme for discrete-time polytopic linear parameter varying systems. Automatica 48(10):2620–2626

    Article  MathSciNet  Google Scholar 

  19. Peng H, Ozaki T, Haggan-Ozaki V, Toyoda Y (2003) A parameter optimization method for radial basis function type models. IEEE Trans Neural Netw 14(2):432–438

    Article  Google Scholar 

  20. Peng H, Ozaki T, Toyoda Y, Shioya H, Nakano K, Haggan-Ozaki V, Mori M (2004) RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process. Control Eng Pract 12(2):191–203

    Article  Google Scholar 

  21. Peng H, Nakano K, Shioya H (2007) Nonlinear predictive control using neural nets-based local linearization ARX model-stability and industrial application. IEEE Trans Control Syst Technol 15(1):130–143

    Article  Google Scholar 

  22. Wu J, Peng H, Ohtsu K, Kitagawa G, Itoh T (2012) Ship's tracking control based on nonlinear time series model. Appl Ocean Res 36:1–11

    Article  Google Scholar 

  23. Wu J, Peng H, Chen Q, Peng X (2014) Modeling and control approach to a distinctive quadrotor helicopter. ISA Trans 53(1):173–185

    Article  Google Scholar 

  24. Qin Y, Peng H, Zhou F, Zeng X, Wu J (2015) Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model. J Frankl Inst 352(10):4309–4338

    Article  MathSciNet  Google Scholar 

  25. Zhou F, Peng H, Qin Y, Zeng X, Xie W, Wu J (2015) RBF-ARX model-based MPC strategies with application to a water tank system. J Process Control 34:97–116

    Article  Google Scholar 

  26. Zhou F, Peng H, Ruan W, Wang D, Liu M, Gu Y, Li L (2018) Cubic-RBF-ARX modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process. Neural Comput & Applic 30(4):1039–1053

    Article  Google Scholar 

  27. Peng H, Yang ZJ, Gui W, Wu M, Shioya H, Nakano K (2007) Nonlinear system modeling and robust predictive control based on RBF-ARX model. Eng Appl Artif Intell 20(1):1–9

    Article  Google Scholar 

  28. Peng H, Kitagawa G, Wu J, Ohtsu K (2011) Multivariable RBF-ARX model-based robust MPC approach and application to thermal power plant. Appl Math Model 35(7):3541–3551

    Article  MathSciNet  Google Scholar 

  29. Zhou F, Peng H, Qin Y, Zeng X, Tian X, Xu W (2017) A RBF-ARX model-based robust MPC for tracking control without steady state knowledge. J Process Control 51:42–54

    Article  Google Scholar 

  30. Zhou F, Peng H, Zeng X, Tian X, Peng X (2017) RBF-ARX model-based robust MPC for nonlinear systems with unknown and bounded disturbance. J Frankl Inst 354(18):8072–8093

    Article  MathSciNet  Google Scholar 

  31. Zhou F, Peng H, Zeng X, Tian X (2018) RBF-ARX model-based two-stage scheduling RPC for dynamic systems with bounded disturbance. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3347-y

  32. Wang D, Li M (2017) Stochastic configuration networks: fundamentals and algorithms. IEEE Trans Cybern 47(10):3466–3479

    Article  Google Scholar 

  33. Zhang A, She J, Qiu J, Yang C, Alsaadi F (2019) Design of motion trajectory and tracking control for underactuated cart-pendulum system. Int J Robust Nonlinear Control 29(8):2458–2470

    Article  MathSciNet  Google Scholar 

  34. Tian X, Peng H, Zeng X, Zhou F, Xu W, Peng X (2019) A modeling and predictive control approach to linear two-stage inverted pendulum based on RBF-ARX model. Int J Control. https://doi.org/10.1080/00207179.2019.1594386

Download references

Acknowledgments

The authors would like to thank the editors and the anonymous referees for their valuable comments and suggestions, which substantially improved the original manuscript. This work was supported by the National Natural Science Foundation of China (61773402, 51575167, 61540037), and the Fundamental Research Funds for the Central Universities of Central South University (2017zzts132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Peng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Peng, H., Zhou, F. et al. A synthesis approach of fast robust MPC with RBF-ARX model to nonlinear system with uncertain steady status information. Appl Intell 51, 19–36 (2021). https://doi.org/10.1007/s10489-019-01555-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01555-9

Keywords

Navigation