Abstract
Intuitionistic Fuzzy Sets is one of the most influential extension and development of Zadeh’s fuzzy set theory. It has strong performance in dealing with uncertain information, while taking into account information on membership degree, non-membership degree and hesitation degree. In this paper, a new loose Pareto dominant relationship named intuitionistic fuzzy dominance is adopted to research multi/many-objective particle swarm optimization problems. Particle swarm optimization (PSO) with double search strategy is employed to update the population to enhance the exploitation and exploration capability of particle in the objective space, especially high-dimensional objective space. In addition, the uniformly distributed reference points are used to balance the convergence and diversity of the algorithm. The proposed algorithm has been compared with four recent multi-objective particle swarm optimization algorithms and four state-of-the-art many-objective evolutionary algorithms on 16 benchmark MOPs with 3, 5,8,10 and 15 objectives, respectively. The simulation results show that the proposed algorithm has better performance on most test problems.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Herrero JG, Berlanga A, Lopez JMM (2009) Effective evolutionary algorithms for many-specifications attainment: Application to air traffic control tracking filters. IEEE Trans Evol Comput 13(1):151–168. https://doi.org/10.1109/TEVC.2008.920677
Sülflow A, Drechsler N, Drechsler R (2007) Robust multi-objective optimization in high dimensional spaces. Proc. Evol. Multi-Criter. Optim, Matsushima, pp 715–726. https://doi.org/10.1007/978-3-540-70928-2_54
Sayyad AS, Menzies T, Ammar H (2013) On the value of user preferences in search-based software engineering: A case study in software product lines. In: Proc. 35th Int. Conf. Softw. Eng., San Francisco, CA, USA, pp. 492–501. https://doi.org/10.1109/ICSE.2013.6606595
Colleo CC, Lamont GB et al (2002) Evolutionary algorithms for solving multiobjective problems. Springer. https://doi.org/10.1007/978-0-387-36797-2
Zheng D, Gen M, Cheng R (1999) Multi-objective optimization using genetic algorithms. Engineering Valuation and Cost Analysis 2:303–310. https://doi.org/10.1016/j.ress.2005.11.018
Liu Y, Gong D, Sun X et al (2017) Many-objective Evolutionary Optimization Based on Reference Points. Appl Soft Comput 50(1):344–355. https://doi.org/10.1016/j.asoc.2016.11.009
Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4):474–494. https://doi.org/10.1109/TEVC.2012.2204264
Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017
Laumanns M, Ocenasek J.(2002). Bayesian Optimization Algorithms for Multi-objective Optimization. International Conference on Parallel Problem Solving from Nature. Springer-Verlag, Inc. doi: https://doi.org/10.1007/3-540-45712-7_29
Jiang S, Yang S (2017) A strength Pareto evolutionary algorithm based on reference direction for multi-objective and many-objective optimization. IEEE Trans Evol Comput 21(3):329–346. https://doi.org/10.1109/TEVC.2016.2592479
Elarbi M, Bechikh S, Gupta A, Said LB, Ong YS (2018) A new decomposition-based NSGA-II for many-objective optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(7):1191–1210. https://doi.org/10.1109/TSMC.2017.2654301
Deb K (2001) Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York. https://doi.org/10.1007/978-0-85729-652-8_1
Kenndy J, Eberhart RC (1995) Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, vol IV. IEEE Service Center, Piscataway, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Figueiredo EMN, Ludermir TB, Bastos-Filho CJA (2016) Many Objective Particle Swarm Optimization. Inf Sci 374:115–134. https://doi.org/10.1016/j.ins.2016.09.026
Coello Coello CA, Pulido GT, Lechuga MS (2004) Handing Multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279. https://doi.org/10.1109/TEVC.2004.826067
Zadeh LA (1968) Fuzzy algorithms. Inf Control 12(2):94–102. https://doi.org/10.1016/S0019-9958(68)90211-8
Y Qi, F Liu, M Liu, M Gong, L Jiao. (2012) Multi-objective immune algorithm with Baldwinian learning, Applied Soft Computing 12(8):2654-2674. doi: 10.1016 /j.asoc.2012.04.005
A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, et al. (2009). SMPSO: A new PSO-based metaheuristic for multi-objective optimization, Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 66–73. https://doi.org/10.1109/MCDM.2009.4938830
Lin Q, Li J, Zhihua D et al (2015) A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res 247(3):732–744. https://doi.org/10.1016/j.ejor.2015.06.071
Li H, Landasilva D (2011) An Adaptive Evolutionary Multi-Objective Approach Based on Simulated Annealing. MIT Press. https://doi.org/10.1162/EVCO_a_00038
Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans on Systems, Man, and Cybernetics 34(3):315–326. https://doi.org/10.1109/TSMCA.2004.824873
Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing Journal 11(4):3658–3670. https://doi.org/10.1016/j.asoc.2011.01.037
Hernandez Diaz A, Santana Quintero L, Coello Coello C et al (2007) Pareto-Adaptive 휀-dominance. Evol Comput 15(4):493–517. https://doi.org/10.1162/evco.2007.15.4.493
Said LB, Bechikh S, Ghedira K (2010) The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818. https://doi.org/10.1109/TEVC.2010.2041060
Peng W, Zhang Q (2008) A Decomposition-based Multi-objective Particle Swarm Optimization Algorithm for Continuous Optimization Problems. IEEE International Conference on Granular Computing 15(3):534–537. https://doi.org/10.1109/GRC.2008.4664724
Zhou C, Dai G, Wang M et al (2018) Indicator and Reference Points Co-Guided Evolutionary Algorithm for Many-Objective Optimization Problems. Knowl-Based Syst 140:50–63. https://doi.org/10.1155/2018/1435463
He Z, Yen GG, Zhang J (2014) Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms. IEEE Trans Evol Comput 18(2):269–285. https://doi.org/10.1109/TEVC.2013.2258025
Zou XF, Chen Y, Liu MZ et al (2008) A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics 38(5):1402–1412. https://doi.org/10.1109/TSMCB.2008.926329
Das I, Dennis J (1998) Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optimiz 8(3):631–657. https://doi.org/10.1137/S1052623496307510
Martínez SZ, Coello CAC (2011) A Multi-objective Particle Swarm Optimizer Based on Decomposition. Conference on Genetic & Evolutionary Computation 162(1):69–76. https://doi.org/10.1145/2001576.2001587
Yang S, Li M, Liu X et al (2013) A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans on Evolutionary Computation 17(5):721–736. https://doi.org/10.1109/TEVC.2012.2227145
Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1):41–63. https://doi.org/10.1109/TEVC.2007.894202
Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417=
Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multiobjective optimization test problems. In Proceedings of IEEE Congress on Evolutionary Computation, pp 825-830. https://doi.org/10.1109/CEC.2002.1007032
Dai C, Wang Y, Ye M (2015) A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci 325:541–557. https://doi.org/10.1016/j.ins.2015.07.018
K. Atanassov.M. (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
Yuan Y et al (2016) A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(1):16–37. https://doi.org/10.1109/TEVC.2015.2420112
Tian Y, Xiang X, Zhang X, Cheng R, Jin Y (2018) Sampling Reference Points on the Pareto Fronts of Benchmark Multi-Objective Optimization Problems. 2018 IEEE Congress on Evolutionary Computation (CEC). https://doi.org/10.1109/CEC.2018.8477730
Tian Y, Cheng R, Zhang X, Jin Y (2017) PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87. https://doi.org/10.1109/MCI.2017.2742868
Jiang S, Cai Z (2010) Faster convergence and higher hypervolume for multi-objective evolutionary algorithms by orthogonal and uniform design. Advances in Computation & Intelligence. https://doi.org/10.1007/978-3-642-16493-4_33
Li B, Tang K, Li J, Yao X (2016) Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Transactions on Evolutionary Computation, 20 (6):924 - 938. https://doi.org/10.1109/TEVC.2016.2549267
Lin Q, Liu S, Zhu Q et al (2018) Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput 22(1):32–46. https://doi.org/10.1109/TEVC.2016.2631279
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints, Evolutionary Computation. IEEE Transactions on 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535
Cheng R, Jin Y, Olhofer M et al (2016) A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans Evol Comput 20(5):773–791. https://doi.org/10.1109/TEVC.2016.2519378
Acknowledgments
This work was supported in part by National Key Research and Development Program Projects of China (Grant No. 2018YFC1504700) and project of Natural Science Foundation in Shaanxi Province (Grant No. 2018JM6029).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, W., Chen, L., Wang, Y. et al. A reference points and intuitionistic fuzzy dominance based particle swarm algorithm for multi/many-objective optimization. Appl Intell 50, 1133–1154 (2020). https://doi.org/10.1007/s10489-019-01569-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-019-01569-3