Skip to main content
Log in

Rule-based aggregation driven by similar images for visual saliency detection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The visual saliency detection consists in determining the relevant visual information in a scene to segment it from the background. This paper proposes visual saliency detection in a rule-based approach using the image similarity cue to improve saliency detection performance. Our system induces rules for saliency detection, and for a given input image, determines the subset of rules to be used from a set of candidate rules. The proposed approach consists of two main stages: training and testing. Firstly, during the training stage, our system learns an ensemble of rough-set-based rules by combining knowledge extracted from outputs of four state-of-the-art saliency models. Secondly, our system determines the most suitable subset of induced rules for binary detection of pixels of a salient object in an image. The decision of the best subset of rules is based on the image similarity cue. The binary determination of saliency in the output image, exempts us from performing a post-processing stage as is needed in most saliency approaches. The proposed method is evaluated quantitatively on three challenging databases designed for the saliency detection task. The results obtained from the performed experiments indicate that the proposed method outperforms the state-of-the-art approaches used for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res 40(10):1489–1506

    Article  Google Scholar 

  2. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 1597–1604

  3. Ren Z, Gao S, Chia L, Tsang IW (2014) Region-based saliency detection and its application in object recognition. IEEE Trans Circuits Syst Video Technol 24(5):769–779

    Article  Google Scholar 

  4. Gao D, Han S, Vasconcelos N (2009) Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Trans Pattern Anal Mach Intell 31(6):989–1005

    Article  Google Scholar 

  5. Wang Q, Yuan Y, Yan P (2013) Visual saliency by selective contrast. IEEE Trans Circuits Syst Video Technol 23(7):1150–1155

    Article  Google Scholar 

  6. Chang C, Siagian C, Itti L (2010) Mobile robot vision navigation & localization using gist and saliency. In: 2010 IEEE Int. Conf. Intell. Robot. Syst., pp 4147–4154

  7. Harding P, Robertson NM (2013) Visual saliency from image features with application to compression. Cogn Comput 5(1):76–98

    Article  Google Scholar 

  8. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  Google Scholar 

  9. Frintrop S, Klodt M, Rome E (2007) A real-time visual attention system using integral images. In: Proc. 5th Int. Conf. Comput. Vis. Syst. (ICVS), pp 1–10

  10. Frintrop S, Werner T, Garcia GM (2015) Traditional saliency reloaded: a good old model in new shape. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 82–90

  11. Le Meur O, Le Callet P, Barba D, Thoreau D (2006) A coherent computational approach to model the bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell 28:802–817

    Article  Google Scholar 

  12. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Intell 34(10):1915–1926

    Article  Google Scholar 

  13. Cheng M-M, Mitra NJ, Huang X, Torr PHS, Hu S-M (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Intell 37(3):569–582

    Article  Google Scholar 

  14. Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: Contrast based filtering for salient region detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 733–740

  15. Zhang J, Sclaroff S, Lin Z, Shen X, Price B, Mech R (2015) Minimum barrier salient object detection at 80 fps. In: Proc. IEEE Int. Conf. Comput. Vis. (ICCV), pp 1404–1412

  16. Huang X, Zhang. Y-J (2017) 300-FPS salient object detection via minimum directional contrast. IEEE Trans Image Process 26(9):4243–4254

    Article  MathSciNet  Google Scholar 

  17. Itti L, Koch C (2001) Computational modelling of visual attention. Nature Rev Neurosci 2(3):194–203

    Article  Google Scholar 

  18. Bylinskii Z, Judd T, Oliva A, Torralba A, Durand F (2016) What do different evaluation metrics tell us about saliency models?

  19. Mai L, Niu Y, Liu F (2013) Saliency aggregation: A data-driven approach. In: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 1131–1138

  20. Borji A, Sihite DN, Itti L (2012) Salient object detection: a benchmark. In: Proc. European Conf. Comput. Vis. (ECCV), pp 414–429

  21. Zhou X, Liu Z, Sun G, Wang X (2017) Adaptive saliency fusion based on quality assessment. Multimedia Tools Appl 76(22):23187–23211

    Article  Google Scholar 

  22. Lopez-Alanis A, Lizarraga-Morales RA, Sanchez-Yanez RE, Martinez-Rodriguez DE, Contreras-Cruz MA (2019) Visual saliency detection using a rule-based aggregation approach. Appl. Sci 9(10)

  23. Nguyen TV, Kankanhalli M (2017) As-similar-as-possible saliency fusion. Multimedia Tools Appl 76 (8):10501–10519

    Article  Google Scholar 

  24. Le Meur O, Liu Z (2014) Saliency aggregation: Does unity make strength? In: Proc. 12th Asia Conf. Comput. Vis. (ACCV), pp 18–32

  25. Liu N, Han J (2016) Dhsnet: Deep hierarchical saliency network for salient object detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 678–686

  26. Hu P, Shuai B, Liu J, Wang G (2017) Deep level sets for salient object detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 540–549

  27. Li H, Chen J, Lu H, Chi Z (2017) Cnn for saliency detection with low-level feature integration. Neurocomputing 226:212–220

    Article  Google Scholar 

  28. Mu N, Xu X, Zhang X, Zhang H (2018) Salient object detection using a covariance-based cnn model in low-contrast images. Neural Comput Appl 29(8):181–192

    Article  Google Scholar 

  29. Chen S, Wang B, Tan X, Hu X (2018) Embedding attention and residual network for accurate salient object detection. IEEE Trans. on Cybern, pp 1–13

  30. Stefanowski J (2007) On combined classifiers, rule induction and rough sets. Trans on Rough Sets VI: LNCS 4374:329–350

    Article  Google Scholar 

  31. Borji A, Cheng MM, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  Google Scholar 

  32. Borji A, Cheng M-M, Jiang H, Li J (2014) Salient object detection: a survey. arXiv:1411.5878

  33. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

    Article  Google Scholar 

  34. Stefanowski J (1998) On rough set based approaches to induction of decision rules. Rough Sets in Knowledge Discovery 1(1):500–529

    MATH  Google Scholar 

  35. Stepaniuk J (2000) Knowledge discovery by application of rough set models, pp 137–233

  36. Grzymala-Busse JW, Stefanowski J (2001) Three discretization methods for rule induction. Int J Intell Syst 16(1):29–38

    Article  Google Scholar 

  37. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explorations Newslett 11(1):10–18

    Article  Google Scholar 

  38. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 4510–4520

  39. Bianco S, Cadene R, Celona L, Napoletano P (2018) Benchmark analysis of representative deep neural network architectures. IEEE Access 6:64270–64277

    Article  Google Scholar 

  40. Chollet F, et al. (2015) Keras. https://keras.io

  41. Deng J, Dong W, Socher R, Li L, Li Kai, Li Fei-Fei. (2009) Imagenet A large-scale hierarchical image database. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 248–255

  42. Wang Y, Feng H-Y (2015) Outlier detection for scanned point clouds using majority voting. Comput Aided Design 62:31–43

    Article  Google Scholar 

  43. Lam L, Suen SY (1997) Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Trans Syst Man Cybern A., Syst Human 27(5):553–568. https://doi.org/10.1109/3468.618255

    Article  Google Scholar 

  44. Shi J, Yan Q, Xu L, Jia J (2016) Hierarchical image saliency detection on extended cssd. IEEE Trans Pattern Anal Mach Intell 38(4):717–729

    Article  Google Scholar 

  45. Batra D, Kowdle A, Parikh D, Luo J, Chen T (2010) iCoseg: Interactive co-segmentation with intelligent scribble guidance. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 3169–3176

  46. Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: a discriminative regional feature integration approach. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp 2083–2090

  47. Dembczynski KJ, Waegeman W, Cheng W, Hüllermeier E (2011) An exact algorithm for f-measure maximization. In Proc. Adv. Neural Inf. Process Syst., pp 1404–1412

  48. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

Download references

Acknowledgements

Alberto Lopez-Alanis and Marco A.Contreras-Cruz would like to acknowledge CONACYT for the financial support through the educational scholarships with numbers 718822 and 568675, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocio A. Lizarraga-Morales.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Alanis, A., Lizarraga-Morales, R.A., Contreras-Cruz, M.A. et al. Rule-based aggregation driven by similar images for visual saliency detection. Appl Intell 50, 1745–1762 (2020). https://doi.org/10.1007/s10489-019-01582-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01582-6

Keywords

Navigation