Skip to main content
Log in

DC programming and DCA for parametric-margin ν-support vector machine

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

As a development of ν-support vector machine (ν-SVM), parametric-margin ν-support vector machine (Par-ν-SVM) can be useful in many cases, especially heteroscedastic noise classification problems. The present article proposes a novel and fast method to solve the primal problem of Par-ν-SVM (named as DC-Par-ν-SVM), while Par-ν-SVM maximizes the parametric-margin by solving a dual quadratic programming problem. In fact, the primal non-convex problem is converted into an unconstrained problem to express the objective function as the difference of convex functions (DC). The DC-Algorithm (DCA) based on generalized Newton’s method is proposed to solve the unconstrained problem cited. Numerical experiments performed on several artificial, real-life, UCI and NDC data sets showed the superiority of the DC-Par-ν-SVM in terms of both accuracy and learning speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Angulo C, Parra X, Catala A (2003) K-SVCR. A support vector machine for multi-class classification. Neurocomputing 55(1-2):57–77

    Article  Google Scholar 

  2. Artacho FJA, Fleming RM, Vuong PT (2018) Accelerating the DC algorithm for smooth functions. Math Program 169(1):95–118

    Article  MathSciNet  MATH  Google Scholar 

  3. Amin M, Ali A (2018) Performance evaluation of supervised machine learning classifiers for predicting healthcare operational decisions. Wavy AI Research Foundation, Lahore

    Google Scholar 

  4. Ayres-de-Campos D, Bernardes J, Garrido A, Marques-de-Sa J, Pereira-Leite L (2000) SisPorto 2.0: a program for automated analysis of cardiotocograms. Journal of Maternal-Fetal Medicine 9(5):311–318

    Google Scholar 

  5. Bennett KP, Bredensteiner EJ (2000) Duality and geometry in SVM classifiers. In: ICML, pp 57–64

  6. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Bradley PS, Mangasarian OL (2000) Massive data discrimination via linear support vector machines. Optimization methods and software 13(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  8. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery 2(2):121–167

    Article  Google Scholar 

  9. Belghiti MT, Tao PD (2007) A new efficient algorithm based on DC programming and DCA for clustering. J Glob Optim 37(4):593–608

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen X, Yang J, Liang J (2012) A flexible support vector machine for regression. Neural Comput Appl 21(8):2005–2013

    Article  Google Scholar 

  11. Cherkassky V, Mulier FM (2007) Learning from data: Concepts, theory, and methods. Wiley, New York

    Book  MATH  Google Scholar 

  12. Clarke FH (1990) Optimization and nonsmooth analysis, Siam

  13. Daniel WW (1990) Friedman two-way analysis of variance by ranks, Applied nonparametric statistics, 262–274

  14. Ding S, An Y, Zhang X, Wu F, Xue Y (2017) Wavelet twin support vector machines based on glowworm swarm optimization. Neurocomputing 225:157–163

    Article  Google Scholar 

  15. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics 11(1):86–92

    Article  MathSciNet  MATH  Google Scholar 

  16. Hao PY (2010) New support vector algorithms with parametric insensitive/margin model. Neural Netw 23 (1):60–73

    Article  MATH  Google Scholar 

  17. Hiriart-Urruty JB, Strodiot JJ, Nguyen VH (1984) Generalized Hessian matrix and second-order optimality conditions for problems with C 1,1 data. Appl Math Optim 11(1):43–56

    Article  MathSciNet  MATH  Google Scholar 

  18. Horst R, Pardalos PM, Van Thoai N (2000) Introduction to global optimization, Springer Science & Business Media

  19. Hong ZQ, Yang JY (1991) Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recogn 24(4):317–324

    Article  MathSciNet  Google Scholar 

  20. Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Communications in Statistics-Theory and Methods 9(6):571–595

    Article  MATH  Google Scholar 

  21. Karasuyama M, Harada N, Sugiyama M, Takeuchi I (2012) Multi-parametric solution-path algorithm for instance-weighted support vector machines. Mach Learn 88(3):297–330

    Article  MathSciNet  MATH  Google Scholar 

  22. Ketabchi S, Moosaei H, Razzaghi M, Pardalos PM (2019) An improvement on parametric ν-support vector algorithm for classification. Ann Oper Res 276(1-2):155–168

    Article  MathSciNet  MATH  Google Scholar 

  23. Ketabchi S, Moosaei H (2012) Minimum norm solution to the absolute value equation in the convex case. J Optim Theory Appl 154(3):1080–1087

    Article  MathSciNet  MATH  Google Scholar 

  24. Khozeimeh F, Alizadehsani R, Roshanzamir M, Khosravi A, Layegh P, Nahavandi S (2017) An expert system for selecting wart treatment method. Comput Bio Med 81:167–175

    Article  Google Scholar 

  25. Khozeimeh F, Jabbari Azad F, Mahboubi Oskouei Y, Jafari M, Tehranian S, Alizadehsani R, Layegh P (2017) Intralesional immunotherapy compared to cryotherapy in the treatment of warts. Int J Dermatology 56 (4):474–478

    Article  Google Scholar 

  26. Koczkodaj WW, Kakiashvili T, Szymanska A, Montero-Marin J, Araya R, Garcia-Campayo J, Rutkowski K, Strzalka D (2017) How to reduce the number of rating scale items without predictability loss. Scientometrics 111(2):581–593

    Article  Google Scholar 

  27. Le Thi HA, Dinh TP, Yen ND (2011) Properties of two DC algorithms in quadratic programming. J Glob Optim 49(3):481–495

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Thi HA, Dinh TP (2018) DC programming and DCA: thirty years of developments. Math Program 169(1):5–68

    Article  MathSciNet  MATH  Google Scholar 

  29. Lichman M (2013) UCI machine learning repository. University of California, School of Information and Computer Science , Irvine

    Google Scholar 

  30. Lima MD, Costa NL, Barbosa R (2018) Improvements on least squares twin multi-class classification support vector machine. Neurocomputing 313:196–205

    Article  Google Scholar 

  31. Mayoraz E, Alpaydin E (1999) Support vector machines for multi-class classification. In: International work-conference on artificial neural networks. Springer, Berlin

  32. Melki G, Kecman V, Ventura S, Cano A (2018) OLLAWV:online learning algorithm using worst-violators. Appl Soft Comput 66:384–393

    Article  Google Scholar 

  33. Musicant DR (1998) NDC: Normally distributed clustered data sets. Computer Sciences Department, University of Wisconsin

    Google Scholar 

  34. Pardalos PM, Ketabchi S, Moosaei H (2014) Minimum norm solution to the positive semidefinite linear complementarity problem. Optimization 63(3):359–369

    Article  MathSciNet  MATH  Google Scholar 

  35. Patricio M, Pereira J, Crisostomo J, Matafome P, Gomes M, Seica R, Caramelo F (2018) Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer 18 (1):29

    Article  Google Scholar 

  36. Peng X (2011) TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn 44(10-11):2678–2692

    Article  MATH  Google Scholar 

  37. Schölkopf B, Smola AJ, Bach F (2002) Learning with kernels:support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  38. Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput 12(5):1207–1245

    Article  Google Scholar 

  39. Tanveer M, Khan MA, Ho SS (2016) Robust energy-based least squares twin support vector machines. Appl Intell 45(1):174– 186

    Article  Google Scholar 

  40. Tao PD, Muu LD (1996) Numerical solution for optimization over the efficient set by dc optimization algorithms. Oper Res Lett 19(3):117–128

    Article  MathSciNet  MATH  Google Scholar 

  41. Vapnik V, Chervonenkis A (1974) Theory of pattern recognition. Nauka, Moscow. [in Russian]

    MATH  Google Scholar 

  42. Vapnik V (2013) The nature of statistical learning theory, Springer science & business media

  43. Wang H, Zhou Z, Xu Y (2018) An improved ν-twin bounded support vector machine. Appl Intell 48(4):1041–1053

    Article  Google Scholar 

  44. Xu Y (2016) K-nearest neighbor-based weighted multi-class twin support vector machine. Neurocomputing 205:430–438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ketabchi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazikar, F., Ketabchi, S. & Moosaei, H. DC programming and DCA for parametric-margin ν-support vector machine. Appl Intell 50, 1763–1774 (2020). https://doi.org/10.1007/s10489-019-01618-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01618-x

Keywords

Navigation