Skip to main content
Log in

Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Hyperspectral (HS) images captured from Earth by satellite and aircraft have become increasingly important in several environmental and ecological contexts (e.g. agriculture and urban areas). In the present study we propose an iterative learning methodology for the change detection of HS scenes taken at different times in the same areas. It cascades clustering and classification through iterative learning, in order to separate salient regions, where a change occurs in the scene from the unchanged background. The iterative learning is evaluated in both the clustering and the classification steps. The experiments performed with the proposed methodology provide encouraging results, also compared to several recent state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In principle, any other pixel-wise distance measure can be implemented for this analysis.

  2. As clarified in Section 3.3.1, clustering is performed on pixels spanned on the feature D—distance computed pixel-wise between the spectral vectors of the bi-temporal scene, according to the theory reported in Section 3.2—and Y — saliency label pixel-wise decided at the completion of the previous iteration. In the first iteration clustering is performed on D (as Y will be computed only after the completion of the classification step), while in each subsequent iteration clustering is performed on D × Y. However, as the information on D is available from the first iteration, we are able to compute (8) at each iteration.

  3. The auto-encoding technique may also be used to reduce the dimensionality of the fused spectral data, even if a recent research shows that no significant improvement can be actually achieved in HS imagery analysis by considering auto-encoding instead of principal components [6].

  4. Correspondence and requests for materials should be addressed to Annalisa Appice (email: annalisa.appice@uniba.it).

  5. https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html

  6. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

  7. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

  8. https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset

  9. https://rslab.ut.ac.ir/documents/81960329/82017906/Hyperspectral_ChangeDetection_Code.zip

  10. https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset

  11. https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset

  12. We use the Matlab implementation of US-ELM available on https://www.ntu.edu.sg/home/egbhuang/elm_codes.html. We run US-ELM with the dimension of the embedding layer varying between 2, 3, 4 and 5. We consider the results achieved from the trial with the highest accuracy.

References

  1. Adar S, Notesco G, Brook A, Livne I, Rojik P, Kopackova V, Zelenková K, Misurec J, Bourguignon A, Chevrel S, Ehrler C, Fisher C, Hanus J, Shkolnisky Y, Ben-Dor E (2011) Change detection over sokolov open-pit mining area, czech republic, using multi-temporal hymap data (2009-2010). Image Signal Process Remote Sens Xvii 8180:81800T. https://doi.org/10.1117/12.898748

    Google Scholar 

  2. Alberti M, Marzluff MJ, Shulenberger S, Bradley G, Ryan C, Zumbrunnen C (2003) Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. Bioscience 53(12):1169–1179. https://doi.org/10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2.

    Google Scholar 

  3. Appice A, Di Mauro N, Lomuscio F, Malerba D (2019) Empowering change vector analysis with autoencoding in bi-temporal hyperspectral images. In: MACHine learning for EArth observation workshop (MACLEANECMLPKDD), vol 2466. CEUR Workshop Proceedings, pp 1–10

  4. Appice A, Guccione P, Malerba D (2016) Transductive hyperspectral image classification: toward integrating spectral and relational features via an iterative ensemble system. Mach Learn 103 (3):343–375. https://doi.org/10.1007/s10994-016-5559-7

    MathSciNet  MATH  Google Scholar 

  5. Appice A, Guccione P, Malerba D (2017) A novel spectral-spatial co-training algorithm for the transductive classification of hyperspectral imagery data. Pattern Recogn 63:229–245. https://doi.org/10.1016/j.patcog.2016.10.010

    Google Scholar 

  6. Appice A, Malerba D (2019) Segmentation-aided classification of hyperspectral data using spatial dependency of spectral bands. ISPRS J Photogramm Remote Sens 147:215–231

    Google Scholar 

  7. Boisgontier H, Noblet V, Heitz F, Rumbach L, Armspach JP (2009) Generalized likelihood ratio tests for change detection in diffusion tensor images. In: Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009. IEEE Press, pp 811–814

  8. Borgelt C, Kruse R (2006) Finding the number of fuzzy clusters by resampling. In: 2006 IEEE International conference on fuzzy systems, pp 48–54. https://doi.org/10.1109/FUZZY.2006.1681693

  9. Bruzzone L, Prieto DF (2000) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38(2):1171–1182

    Google Scholar 

  10. Celik T (2010) Method for unsupervised change detection in satellite images. Electron Lett 46(9):624–626. https://doi.org/10.1049/el.2010.0808

    Google Scholar 

  11. Choi S, Cha S, Tappert C (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8:43–48

    Google Scholar 

  12. Clifton C (2003) Change detection in overhead imagery using neural networks. Appl Intell 18(2):215–234. https://doi.org/10.1023/A:1021942526896

    MATH  Google Scholar 

  13. Deng JS, Wang K, Deng Y, Qi GJ (2008) Pca-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int J Remote Sens 29(16):4823–4838

    Google Scholar 

  14. Ding S, Zhang N, Zhang J, Xu X, Shi Z (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8(2):587–595. https://doi.org/10.1007/s13042-015-0351-8

    Google Scholar 

  15. Du S, Chen S (2014) Salient object detection via random forest. Signal Processing Letters. IEEE 21:51–54. https://doi.org/10.1109/LSP.2013.2290547

    Google Scholar 

  16. Du S, Ikenaga T (2019) Iterative autoencoding and clustering for unsupervised feature representation. In: 2019 IEEE International symposium on circuits and systems (ISCAS), pp 1–5. https://doi.org/10.1109/ISCAS.2019.8702659

  17. Du Y, Chang CI, Ren H, Chang CC, Jensen OJ, D’Amico F (2004) New hyperspectral discrimination measure for spectral characterization. Opt Eng - OPT ENG 43:1777–1786. https://doi.org/10.1117/1.1766301

    Google Scholar 

  18. Du Z, Jeong YS, Jeong MK, Kong SG (2012) Multidimensional local spatial autocorrelation measure for integrating spatial and spectral information in hyperspectral image band selection. Appl Intell 36(3):542–552. https://doi.org/10.1007/s10489-010-0274-8

    Google Scholar 

  19. ESA: Fundamentals of atmospheric correction (2015). http://seom.esa.int/landtraining2015/files/Day_2/D2T1b_LTC2015_Gastellu-Etchegorry.pdf

  20. Garea AS, Ordóñez Á, Heras DB, Argüello F (2016) Hyperview: an open source desktop application for hyperspectral remote-sensing data processing. Int J Remote Sens 37(23):5533–5550. https://doi.org/10.1080/01431161.2016.1244363

    Google Scholar 

  21. Gewali UB, Monteiro ST, Saber E (2018) Machine learning based hyperspectral image analysis: a survey. CoRR arXiv:1802.08701

  22. GmbH C Rtk x8 hyperspectral mapping (2019). https://cubert-gmbh.com/product/rtk-x8-hyperspectral-mapping/

  23. Golub GH, Van Loan CF (2013) Matrix Computations, 4th edn. JHU Press

  24. Gupta DM, Munshi MK (1985) Land use and forestry studies of himachal pradesh. Int J Remote Sens 6:535–539

    Google Scholar 

  25. Kwon H, Nasrabadi NM (2005) Kernel rx-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 43(2):388–397. https://doi.org/10.1109/TGRS.2004.841487

    Google Scholar 

  26. Helmy A, El-Taweel G (2010) Neural network change detection model for satellite images using textural and spectral characteristics. Amer J Eng Appl Sci 3(4):604–610

    Google Scholar 

  27. Hoye G, Fridman A (2013) The mixel camera — keystone-free hyperspectral images. In: 2013 5Th workshop on hyperspectral image and signal processing: Evolution in remote sensing (WHISPERS), pp 1–4. https://doi.org/10.1109/WHISPERS.2013.8080703

  28. Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417. https://doi.org/10.1109/TCYB.2014.2307349

    Google Scholar 

  29. Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106

    Google Scholar 

  30. Ilsever M, Unsalan C (2012) Two-dimensional change detection methods: remote sensing applications. Springer Science & Business Media

  31. Im J, Jensen JR, Tullis JA (2008) Object-based change detection using correlation image analysis and image segmentation. Int J Remote Sens 29(2):399–423. https://doi.org/10.1080/01431160601075582

    Google Scholar 

  32. Khanday W (2016) Review of various change detection techniques for hyperspectral images. Asian J Technol Manag Res (AJTMR) 6(2):39–42

    MathSciNet  Google Scholar 

  33. Kiana E, Homayouni S, Sharifi MA, Farid-Rohani M (2015) Unsupervised change detection in sar images using gaussian mixture models. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W5:407–410. https://doi.org/10.5194/isprsarchives-XL-1-W5-407-2015

  34. Lemoine G, Giovalli M (2013) Geo-correction of high-resolution imagery using fast template matching on a gpu in emergency mapping contexts. MDPI Remote Sens 5(9):4488–4502

    Google Scholar 

  35. Li S, Song W, Fang L, Chen Y, Ghamisi P, Benediktsson J (2019) Deep learning for hyperspectral image classification: an overview. IEEE Trans Geosci Remote Sens PP:1–20. https://doi.org/10.1109/TGRS.2019.2907932

  36. Liang J, Zhou J, Bai X, Qian Y (2013) Salient object detection in hyperspectral imagery. In: 2013 20Th IEEE international conference on image processing (ICIP). https://doi.org/10.1109/ICIP.2013.6738493

  37. Lin W, Wu Z, Lin L, Wen A, Li J (2017) An ensemble random forest algorithm for insurance big data analysis. IEEE Access 5:16568–16575

    Google Scholar 

  38. Liu S, Bruzzone L, Bovolo F, Du P (2015) Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Trans Geosci Remote Sens 53(1):244–260. https://doi.org/10.1109/TGRS.2014.2321277

    Google Scholar 

  39. Lopez-Fandino J, Garea AS, Heras DB, Argu̇ello F (2018) Stacked autoencoders for multiclass change detection in hyperspectral images. In: 2018 IEEE International geoscience and remote sensing symposium, IGARSS 2018. IEEE, Valencia, pp 1906–1909

  40. Lopez-Fandino J, Heras DB, Arguello F, Duro RJ (2017) Cuda multiclass change detection for remote sensing hyperspectral images using extended morphological profiles. In: 2017 9Th IEEE international conference on intelligent data acquisition and advanced computing systems: Technology and applications (IDAACS), vol 1, pp 404–409

  41. Lopez-Fandino J, Heras DB, Argu̇ello F, Mura MD (2019) GPU Framework for change detection in multitemporal hyperspectral images. Int J Parallel Prog 47(2):272–292. https://doi.org/10.1007/s10766-017-0547-5

    Google Scholar 

  42. Louppe G (2015) Understanding random forests: From theory to practice. arXiv:1407.7502

  43. Lu D, Mause P, Brondizio E, Moran E (2010) Change detection techniques. Int J Remote Sens 25:2365–2401

    Google Scholar 

  44. Marpu P, Gamba P, Benediktsson JA (2011) Hyperspectral change detection with ir-mad and initial change mask. In: 2011 3Rd workshop on hyperspectral image and signal processing: Evolution in remote sensing (WHISPERS), pp 1–4. https://doi.org/10.1109/WHISPERS.2011.6080961

  45. Michel U, Thunig H, Ehlers M, Reinartz P (2012) Rapid change detection algorithm for disaster management. ISPRS - International Archives of the Photogrammetry. Remote Sens Spatial Inf Sci I-4:107–111

    Google Scholar 

  46. Ming H, Wenzhong S, Zhang H, Chang L (2014) Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci Remote Sens Lett 11(1):210–214. https://doi.org/10.1109/LGRS.2013.2252879

    Google Scholar 

  47. Moore TS, Campbell JW, Feng H (2001) A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms. IEEE Trans Geosci Remote Sens 39(8):1764–1776. https://doi.org/10.1109/36.942555

    Google Scholar 

  48. Mouroulis P, Green R, Chrien TG (2000) Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Appl Opt 39(13):2210–2220

    Google Scholar 

  49. Najafi A, Hasanlou M, Akbari V (2017) Land cover changes detection in polarimetric sar data using algebra, similarity and distance based methods. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XLII:195–200

    Google Scholar 

  50. Nousi P, Tefas A (2018) Self-supervised autoencoders for clustering and classification. Evolv Syst:1–14. https://doi.org/10.1007/s12530-018-9235-y

  51. Otsu N (1972) A threshold selection method from gray-level histograms. IEEE Trans Geosc Remote Sens 9 (1):62–66

    Google Scholar 

  52. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  53. Penglin Z, Zhiyong L, Dan Z, Jiangping C (2012) A shape similarity based change detection approach of multi-resolution remote sensing images. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci I-7:263–266

    Google Scholar 

  54. Peters G, Crespo F, Lingras P, Weber R (2013) Soft clustering – fuzzy and rough approaches and their extensions and derivatives. Int J Approx Reason 54(2):307–322

    MathSciNet  Google Scholar 

  55. Read JM, Lam NS (2002) Spatial methods for characterizing land cover and detecting land cover changes for the tropics. Int J Remote Sens 23:2457–2474

    Google Scholar 

  56. Reynolds D (2009) Gaussian mixture models. In: Li S. Z., Jain A (eds) Encyclopedia of biometrics. Springer, Boston, pp 659–663. https://doi.org/10.1007/978-0-387-73003-5_196

  57. Rufin P, Frantz D, Ernst S, Rabe A, Griffiths P, Özdoǧan M, Hostert P (2019) Mapping cropping practices on a national scale using intra-annual landsat time series binning, vol 11. https://doi.org/10.3390/rs11030232

  58. Sahoo P, Soltani S, Wong AC (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260

    Google Scholar 

  59. Seydi ST, Hasanlou M (2017) A new land-cover match-based change detection for hyperspectral imagery. Eur J Remote Sens 50(1):517–533. https://doi.org/10.1080/22797254.2017.1367963

    Google Scholar 

  60. Song A, Choi J, Han Y, Kim Y (2018) Change detection in hyperspectral images using recurrent 3d fully convolutional networks. Remote Sens 10:1827. https://doi.org/10.3390/rs10111827

    Google Scholar 

  61. Eismann MT, Meola J, Hardie RC (2008) Hyperspectral change detection in the presence of diurnal and seasonal variations. IEEE Trans Geosci Remote Sens 46:237–249. https://doi.org/10.1109/TGRS.2007.907973

    Google Scholar 

  62. Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987

    Google Scholar 

  63. Truslow E, Manolakis D, Pieper M, Cooley T, Brueggeman M (2014) Performance prediction of matched filter and adaptive cosine estimator hyperspectral target detectors. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2337–2350

    Google Scholar 

  64. Verbeek JJ, Vlassis N, Kröse B (2003) Efficient greedy learning of gaussian mixture models. Neural Comput 15(2):469–485. https://doi.org/10.1162/089976603762553004

    MATH  Google Scholar 

  65. Wang J, Liu S, Zhang S (2015) A novel saliency-based object segmentation method for seriously degenerated images. In: 2015 IEEE International conference on information and automation, pp 1172–1177

  66. Wu C, Du B, Zhang L (2013) A subspace-based change detection method for hyperspectral image. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):815–830. https://doi.org/10.1109/JSTARS.2013.2241396

    Google Scholar 

  67. Xia J, Ghamisi P, Yokoya N, Iwasaki A (2018) Random forest ensembles and extended multiextinction profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(1):202–216

    Google Scholar 

  68. Yang Z, Mueller R (2007) Spatial-spectral cross-correlation for change detection : a case study for citrus coverage change detection. In: ASPRS 2007 Annual conference, vol 2, pp 767–777

  69. Yavariabdi A, Kusetogullari H (2017) Change detection in multispectral landsat images using multi-objective evolutionary algorithm, vol PP. https://doi.org/10.1109/LGRS.2016.2645742

  70. Yazdani H, Ortiz-Arroyo D, Choros K, Kwasnicka H (2016) Applying bounded fuzzy possibilistic method on critical objects. In: IEEE 17th international symposium on computational intelligence and informatics, CINTI 2016, pp 000271–000276

  71. Zhang N, Ding S (2017) Unsupervised and semi-supervised extreme learning machine with wavelet kernel for high dimensional data. Memet Comput 9(2):129–139. https://doi.org/10.1007/s12293-016-0198-x

    Google Scholar 

Download references

Acknowledgments

This work fulfills the research objectives of the PON ”Ricerca e Innovazione” 2014–2020 project RPASinAir ”Integrazione dei Sistemi Aeromobili a Pilotaggio Remoto nello spazio aereo non segregato per servizi” (ARS01_00820), funded by the Italian Ministry for Universities and Research (MIUR). The authors thank Lynn Rudd for her help in reading the manuscript, López Fandiño Javier for providing bi-temporal imagery data of Hermiston1, Santa Barbara and Patterson, Mahdi Hasanlou for providing bi-temporal imagery data of Hermiston2 and Francesco Lomuscio for running experiments with AICA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Appice.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appice, A., Guccione, P., Acciaro, E. et al. Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification. Appl Intell 50, 3179–3200 (2020). https://doi.org/10.1007/s10489-020-01701-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01701-8

Keywords

Navigation