Skip to main content
Log in

Batch Bayesian optimization via adaptive local search

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Bayesianoptimization (BO) provides an efficient tool for solving the black-box global optimization problems. Under situations where multiple points can be evaluated simultaneously, batch Bayesian optimization has been a popular extension by taking full use of the computational and experimental resources. In this paper, an adaptive local search strategy is investigated to select batch points for Bayesian optimization. First, multi-start strategy and gradient-based optimization method are combined to maximize the acquisition function. Then, an automatic cluster approach (e.g., X-means) is applied to adaptively identify the acquisition function’s local maxima from the gradient-based optimization results. Third, the Bayesian stopping criterion is utilized to guarantee all the local maxima can be obtained theoretically. Moreover, the lower bound confidence criterion and frontend truncation operation are employed to select the most promising local maxima as batch points. Extensive evaluations on various synthetic functions and two hyperparameter tuning problems for deep learning models are utilized to verify the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

References

  1. Abdel-Hamid O, Mohamed Ar, Jiang H, Deng L, Penn G, Yu D (2014) Convolutional neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, and language processing 22(10):1533–1545

    Article  Google Scholar 

  2. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ecg signals. Inf Sci 415:190–198

    Article  Google Scholar 

  3. Arora JS, Elwakeil OA, Chahande AI, Hsieh CC (1995) Global optimization methods for engineering applications: a review. Struc Optim 9:137–159. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2086877131

    Article  Google Scholar 

  4. Auer P (2002) Using confidence bounds for exploitation-exploration trade-offs. J Mach Learn Res 3:397–422

    MathSciNet  MATH  Google Scholar 

  5. Azimi J, Jalali A, Fern X (2011) Dynamic batch bayesian optimization. arXiv:1110.3347

  6. Azimi J, Jalali A, Fern X (2012) Hybrid batch bayesian optimization. arXiv:1202.5597

  7. Balandat M, Karrer B, Jiang DR, Daulton S, Letham B, Wilson AG, Bakshy E (2019) Botorch: programmable bayesian optimization in pytorch. arXiv:1910.06403

  8. Bergstra JS, Bardenet R, Bengio Y, Kégl B. (2011) Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems 24, pp. 2546–2554

  9. Binder P, Muma M, Zoubir AM (2018) Gravitational clustering: a simple, robust and adaptive approach for distributed networks. Signal Process 149:36–48

    Article  Google Scholar 

  10. Bishop CM, et al. (2006) Pattern recognition and machine learning. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/166397329

  11. Brochu E, Cora VM, De Freitas N (2010) A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599

  12. Bui DM, Nguyen HQ, Yoon Y, Jun S, Amin MB, Lee S (2015) Gaussian process for predicting cpu utilization and its application to energy efficiency. Appl Intell 43(4):874–891

    Article  Google Scholar 

  13. Buja A, Tibshirani R, Hastie T, Simard P, Sackinger E, Duda ro, Hart pe (1973) Pattern classification and scene analysis, Wiley, New York. Friedman, J. (1994), Flexible metric nearest neighbour classification, technical report, Stan-Ford University

  14. Chevalier C, Ginsbourger D (2013) Fast computation of the multi-points expected improvement with applications in batch selection. In: Learning and intelligent optimization, pp 59–69

  15. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  16. Contal E, Buffoni D, Robicquet A, Vayatis N (2013) Parallel gaussian process optimization with upper confidence bound and pure exploration. In: Machine learning and knowledge discovery in databases, pp 225–240

  17. Daxberger EA, Low BKH (2017) Distributed batch gaussian process optimization. In: Proceedings of the 34th international conference on machine learning - volume 70, ICML’17, pp 951–960

  18. Desautels T, Krause A, Burdick JW (2014) Parallelizing exploration-exploitation tradeoffs in gaussian process bandit optimization. The Journal of Machine Learning Research 15(1):3873–3923

    MathSciNet  MATH  Google Scholar 

  19. Feng Y, Hamerly G (2007) Pg-means: learning the number of clusters in data. In: Advances in neural information processing systems, pp 393–400

  20. Fujita H, Cimr D (2019) Decision support system for arrhythmia prediction using convolutional neural network structure without preprocessing. Appl Intell 49(9):3383–3391

    Article  Google Scholar 

  21. Ginsbourger D, Le Riche R, Carraro L (2008) A multi-points criterion for deterministic parallel global optimization based on gaussian processes. Tech rep

  22. González J, Longworth J, James DC, Lawrence ND (2015) arXiv:1505.01627. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2291718609

  23. Gonzalez J, Dai Z, Hennig P, Lawrence ND (2016) Batch Bayesian optimization via local penalization. In: Proceedings of the nineteenth international workshop on artificial intelligence and statistics. Sourced from Microsoft Academic, vol 51, pp 648–657 - https://academic.microsoft.com/paper/2409689189

  24. González J, Dai Z, Damianou AC, Lawrence ND (2017) Preferential Bayesian optimization. In: Proceedings of the 34th international conference on machine learning. Sourced from Microsoft Academic, vol 70, pp 1282–1291 - https://academic.microsoft.com/paper/2964168155

  25. György A, Kocsis L (2011) Efficient multi-start strategies for local search algorithms. J Artif Intell Res 41:407–444

    Article  MathSciNet  Google Scholar 

  26. Hernández-Lobato JM, Hoffman MW, Ghahramani Z (2014) Predictive entropy search for efficient global optimization of black-box functions. In: Advances in neural information processing systems 27. Sourced from Microsoft Academic, pp 918–926 - https://academic.microsoft.com/paper/2167789032

  27. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, et al. (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine 29(6):82–97

    Article  Google Scholar 

  28. Hoffman M, Shahriari B, Freitas N (2014) On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In: Artificial intelligence and statistics, pp 365–374

  29. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  Google Scholar 

  30. Kandasamy K, Schneider J, Póczos B. (2015) High dimensional bayesian optimisation and bandits via additive models. In: International conference on machine learning, pp 295–304

  31. Kass RE, Wasserman L (1995) A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion. Journal of the American Statistical Association 90(431):928–934

    Article  MathSciNet  Google Scholar 

  32. Kathuria T, Deshpande A, Kohli P (2016) Batched gaussian process bandit optimization via determinantal point processes. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29, pp 4206–4214

  33. Kelley CT (1987) Iterative methods for optimization. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2123224804

  34. Kim Y (2014) Convolutional neural networks for sentence classification. arXiv:1408.5882

  35. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2618530766

    Article  Google Scholar 

  36. Kushner HJ (1964) A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise. Journal of Fluids Engineering 86(1):97–106

    Google Scholar 

  37. Lai T, Chen R, Yang C, Li Q, Fujita H, Sadri A, Wang H (2020) Efficient robust model fitting for multistructure data using global greedy search. IEEE Trans Cybern 50(7):3294–3306. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2921794350

    Article  Google Scholar 

  38. Lai T, Fujita H, Yang C, Li Q, Chen R (2019) Robust model fitting based on greedy search and specified inlier threshold. IEEE Trans Ind Electron 66(10):7956–7966

    Article  Google Scholar 

  39. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  40. Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2016) Hyperband: A novel bandit-based approach to hyperparameter optimization. arXiv:1603.06560

  41. Li X, Lai T, Wang S, Chen Q, Yang C, Chen R, Lin J, Zheng F (2019) Weighted feature pyramid networks for object detection. In: 2019 IEEE Intl conf on parallel distributed processing with applications, big data cloud computing, sustainable computing communications, social computing networking (ISPA/BDCloud/socialcom/sustaincom), pp 1500–1504

  42. Liu DC, Nocedal J (1989) On the limited memory bfgs method for large scale optimization. Math Program 45(1):503–528

    Article  MathSciNet  Google Scholar 

  43. Lizotte DJ, Wang T, Bowling MH, Schuurmans D (2007) Automatic gait optimization with gaussian process regression. In: IJCAI, vol 7, pp 944–949

  44. Lyons R (2003) Determinantal probability measures. Publications Mathématiques de l’IHÉS 98:167–212

    Article  MathSciNet  Google Scholar 

  45. Lyu W, Yang F, Yan C, Zhou D, Zeng X (2018) Batch bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design. In: International conference on machine learning, pp. 3306–3314

  46. Marchant R, Ramos F (2012) Bayesian optimisation for intelligent environmental monitoring. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 2242– 2249

  47. Martí R, Aceves R, León MT, Moreno-Vega JM, Duarte A (2019) Intelligent multi-start methods, 221–243. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/2890433140

  48. Martinez-Cantin R, de Freitas N, Brochu E, Castellanos J, Doucet A (2009) A bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Auton Robot 27(2):93–103

    Article  Google Scholar 

  49. McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239– 245

    MathSciNet  MATH  Google Scholar 

  50. Močkus J (1975) On bayesian methods for seeking the extremum. In: Optimization techniques IFIP technical conference, pp 400–404. Springer

  51. Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. Journal of Statistical Planning and Inference 43(3):381–402

    Article  Google Scholar 

  52. Nguyen V, Gupta S, Rana S, Li C, Venkatesh S (2018) Practical batch bayesian optimization for less expensive functions. arXiv:1811.01466

  53. Nguyen V, Rana S, Gupta S, Li C, Venkatesh S (2017) Budgeted batch bayesian optimization with unknown batch sizes. arXiv:1703.04842

  54. Nguyen V, Gupta S, Rana S, Li C, Venkatesh S (2019) Filtering bayesian optimization approach in weakly specified search space. Knowledge and Information Systems 60(1):385–413

    Article  Google Scholar 

  55. Ning B, Han QL, Zuo Z (2019) Distributed optimization for multiagent systems: An edge-based fixed-time consensus approach. IEEE Transactions on Systems Man, and Cybernetics 49(1):122–132

    Google Scholar 

  56. Park JS (1994) Optimal latin-hypercube designs for computer experiments. Journal of statistical planning and inference 39(1):95–111

    Article  MathSciNet  Google Scholar 

  57. Pelleg D, Moore AW, et al. (2000) X-means: Extending k-means with efficient estimation of the number of clusters. In: Icml, vol 1, pp 727–734

  58. Peng X, Feng J, Xiao S, Yau W, Zhou JT, Yang S (2018) Structured autoencoders for subspace clustering. IEEE Trans Image Process 27(10):5076–5086

    Article  MathSciNet  Google Scholar 

  59. Peng X, Zhu H, Feng J, Shen C, Zhang H, Zhou JT (2019) Deep clustering with sample-assignment invariance prior. IEEE Transactions on Neural Networks and Learning Systems, 1–12

  60. Picheny V, Wagner T, Ginsbourger D (2013) A benchmark of kriging-based infill criteria for noisy optimization. Struct Multidiscip Optim 48(3):607–626

    Article  Google Scholar 

  61. Rasmussen CE (2000) The infinite gaussian mixture model. In: Advances in neural information processing systems, pp 554– 560

  62. Rinnooy Kan AHG, Timmer GT (1987) Stochastic global optimization methods part i: Clustering methods. Math Program 39(1):27–56

    Article  Google Scholar 

  63. Shah A, Ghahramani Z (2015) Parallel predictive entropy search for batch global optimization of expensive objective functions. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in neural information processing systems 28, pp 3330–3338

  64. Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104(1):148–175

    Article  Google Scholar 

  65. Shirai T, Takahashi Y (2003) Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes. J Funct Anal 205(2):414–463

    Article  MathSciNet  Google Scholar 

  66. Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems 25, pp 2951–2959

  67. Srinivas N, Krause A, Kakade SM, Seeger M (2009) Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv:0912.3995

  68. Teklehaymanot FK, Muma M, Liu J, Zoubir AM (2016) In-network adaptive cluster enumeration for distributed classification and labeling. In: 2016 24Th european signal processing conference (EUSIPCO), pp. 448–452

  69. Vu D, Georgievska S, Szoke S, Kuzniar A, Robert V (2017) fMLC: fast multi-level clustering and visualization of large molecular datasets. Bioinformatics 34(9):1577–1579

    Article  Google Scholar 

  70. Wang L, Xi J, He M, Liu G (2020) Robust time-varying formation design for multiagent systems with disturbances: Extended-state-observer method. International Journal of Robust and Nonlinear Control 30(7):2796–2808

    Article  MathSciNet  Google Scholar 

  71. Wang Z, Jegelka S, Kaelbling LP, Lozano-Pérez T (2017) Focused model-learning and planning for non-gaussian continuous state-action systems. In: 2017 IEEE International conference on robotics and automation (ICRA), pp 3754–3761

  72. Wang Z, Li C, Jegelka S, Kohli P (2017) Batched high-dimensional bayesian optimization via structural kernel learning. In: Proceedings of the 34th international conference on machine learning - volume 70, ICML’17, pp 3656–3664

  73. Wang Z, Shakibi B, Jin L, de Freitas N (2014) Bayesian multi- scale optimistic optimization

  74. Williams CK, Rasmussen CE (2005) Gaussian processes for machine learning. Sourced from Microsoft Academic - https://academic.microsoft.com/paper/1746819321

  75. Wilson J, Hutter F, Deisenroth M (2018) Maximizing acquisition functions for bayesian optimization. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in neural information processing systems 31, pp 9884–9895

  76. Wu J, Frazier P (2016) The parallel knowledge gradient method for batch bayesian optimization. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29, pp 3126–3134

  77. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747

  78. Van Stein B, Wang H, Kowalczyk W, Emmerich M, Bäck T (2019) Cluster-based kriging approximation algorithms for complexity reduction. Appl Intell 50(3):1–14

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the three reviewers and the associate editors for their enthusiasm and thoughtful feedbacks, which helps a lot to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Jiang.

Ethics declarations

Conflict of interests

There are neither financial interests nor relationships that will influence the content reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is financially supported by the National Key R&D Program of China (2018YFB1701400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, C. & Zheng, J. Batch Bayesian optimization via adaptive local search. Appl Intell 51, 1280–1295 (2021). https://doi.org/10.1007/s10489-020-01790-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01790-5

Keywords

Navigation