Skip to main content
Log in

HFADE-FMD: a hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in protein-protein interaction networks

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Functional module detection in protein-protein interaction (PPI) network is one important content of the proteomics research in the post-genomic era. Nowadays the swarm intelligence and evolutionary based approaches have become effective ways for detecting functional modules. This paper proposes a novel hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in PPI networks (called HFADE-FMD). HFADE-FMD first initializes each firework individual into a candidate functional module partition based on label propagation according to the topological and functional information between protein nodes. Then HFADE-FMD uses the explosion operator of firework algorithm, and mutation, crossover and selection strategies of differential evolution algorithm to iteratively search for better functional module partitions. To verify the performance of HFADE-FMD, this paper compared it with ten competitive methods on four public PPI datasets. The experimental results show that HFADE-FMD achieves prominent performance with respective to Recall, Sn, PPV, and ACC metrics while performing well in terms of Precision and F-measure metrics. Thus, it is able to more accurately detect functional modules and help biologists to find some novel biological insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eisenberg D, Marcotte EM, Xenarios I, et al. (2000) Protein function in the post-genomic era. Nature 405(6788):823–826

    Article  Google Scholar 

  2. Ji J, Zhang A, Liu C, et al. (2014) Survey: functional module detection from protein-protein interaction networks. IEEE Trans Knowl Data Eng 26(2):261–277

    Article  Google Scholar 

  3. Li X, Wu M, Kwoh CK, Ng SK (2010) Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genom 11(1):S3

    Article  Google Scholar 

  4. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1

    Article  Google Scholar 

  5. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8):1021–1023

    Article  Google Scholar 

  6. Hu L, Chan KCC (2015) A density-based clustering approach for identifying overlapping protein complexes with functional preferences. BMC Bioinform 16:174

    Article  Google Scholar 

  7. Rivera CG, Vakil R, Bader JS (2010) NeMo: network module identification in cytoscape. BMC Bioinform 11(Suppl 1):S61

    Article  Google Scholar 

  8. Li M, Wang J, Chen J (2008) A fast agglomerate algorithm for mining functional modules in protein interaction networks. In: Proceedings of the 1st international conference on biomedical engineering and informatics, pp 3–7

  9. King AD, Pržulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20(17):3013–3020

    Article  Google Scholar 

  10. Abdullah A, Deris S, Hashim SZM, Jamil HM (2009) Graph partitioning method for functional module detections of protein interaction network. In: Proceedings of the international conference on computer technology and development (ICCTD’09), pp 230–234

  11. Vella D, Marini S, Vitali F, Silvestre DD, Mauri G, Bellazzi R (2018) MTGO: PPI network analysis via topological and functional module identification. Sci Rep 8(1):5499

    Article  Google Scholar 

  12. Cho YR, Hwang W, Ramanathan M, Zhang A (2007) Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinform 8(1):265

    Article  Google Scholar 

  13. Feng J, Jiang R, Jiang T (2011) A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Trans Comput Biol Bioinform 8(3):621–634

    Article  Google Scholar 

  14. Qin G, Gao L (2010) Spectral clustering for detecting protein complexes in protein-protein interaction (PPI) networks. Math Comput Model 52(11):2066–2074

    Article  MathSciNet  MATH  Google Scholar 

  15. Inoue K, Li W, Kurata H (2010) Diffusion model based spectral clustering for protein-protein interaction networks. Plos One 5(9):e12623

    Article  Google Scholar 

  16. Wu M, Li X, Kwoh CK, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform 10(1):169

    Article  Google Scholar 

  17. Ma X, Gao L (2012) Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability. Inf Sci 189:233–254

    Article  Google Scholar 

  18. Liu Q, Song J, Li J (1223) Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes. Sci Rep 6(2):2016

    Google Scholar 

  19. Yu FY, Yang ZH, Tang N, Lin HF, Wang J, Yang ZW (2014) Predicting protein complex in protein interaction network-a supervised learning based method. BMC Syst Biol 8(3):S4

    Article  Google Scholar 

  20. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Studies in Computational Intelligence. https://doi.org/10.1007/978-3-030-10674-4

  21. Fahy C, Yang S, Gongora M (2019) Ant colony stream clustering: a fast density clustering algorithm for dynamic data streams. IEEE Trans Cybern 49(6):2215–2228

    Article  Google Scholar 

  22. Abualigah L, Khader A, Hanandeh E (2018) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48(11):4047–4071

    Article  Google Scholar 

  23. Maulik U, Saha I (2010) Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Trans Geosci Remote Sens 48(9):3503–3510

    Article  Google Scholar 

  24. Abualigah LM, Khader AT, Hanandeh ES (2018) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125

    Article  Google Scholar 

  25. Revathi J, Eswaramurthy VP, Padmavathi P (2019) Bacterial colony optimization for data clustering. In: IEEE international conference on electrical, computer and communication technologies (ICECCT)

  26. Abualigah LM, Khader AT, Hanandeh ES, Gandomi AH (2017) A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Appl Soft Comput 60:423–435

    Article  Google Scholar 

  27. Sallim J, Abdullah R, Khader AT (2008) ACOPIN: an ACO algorithm with TSP approach for clustering proteins from protein interaction network. In: Proceedings of second UKSIM European symposium on computer modeling and simulation, pp 203–208

  28. Pizzuti C, Rombo S (2012) Experimental evaluation of topological-based fitness functions to detect complexes in PPI networks. In: Proceedings of the 14th annual conference on genetic and evolutionary computation. ACM, New York, pp 193–200

  29. Ji J, Liu Z, Zhang A, Yang C, Liu C (2013) HAM-FMD: mining functional modules in protein-protein interaction networks using ant colony optimization and multi-agent evolution. Neurocomputing 121:453–469

    Article  Google Scholar 

  30. Ji J, Liu H, Zhang A, Liu C (2015) ACC-FMD: ant colony clustering for functional module detection in protein-protein interaction networks. Int J Data Min Bioinform 11(3):331– 363

    Article  Google Scholar 

  31. Yang C, Ji J, Zhang A (2018) BFO-FMD: bacterial foraging optimization for functional module detection in protein-protein interaction networks. Soft Comput 22(10):3395–3416

    Article  Google Scholar 

  32. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Proceedings of the 1st international conference on advances in swarm intelligence. Springer, Berlin, pp 355–364

  33. Bacanin N, Tuba M (2015) Fireworks algorithm applied to constrained portfolio optimization problem. In: 2015 IEEE congress on evolutionary computation (CEC), pp 1242–1249

  34. Babu TS, Ram JP, Sangeetha K, Laudani A, Rajasekar N (2016) Parameter extraction of two diode solar PV model using fireworks algorithm. Solar Energy 140:265–276

    Article  Google Scholar 

  35. Reddy KS, Panwar LK, Kumar R, Panigrahi BK (2016) Binary fireworks algorithm for profit based unit commitment (PBUC) problem. Int J Electr Power Energy Syst 83:270–282

    Article  Google Scholar 

  36. Xue Y, Zhao B, Ma T, Pang W (2018) A self-adaptive fireworks algorithm for classification problems. IEEE Access 6:44406–44416

    Article  Google Scholar 

  37. Messaoudi I, Kamel N (2019) Community detection using fireworks optimization algorithm. Int J Artif Intell Tools 28(3):1950010

    Article  Google Scholar 

  38. Barraza J, Valdez F, Melin P, González C (2020) Optimal number of clusters finding using the fireworks algorithm. In: Hybrid intelligent systems in control, pattern recognition and medicine, pp 83–93

  39. Barraza J, Melin P, Valdez F, Gonzalez CI (2017) Fuzzy fireworks algorithm based on a sparks dispersion measure. Algorithms 10(3):83

    Article  Google Scholar 

  40. Zhang T, Yue Q, Zhao X, Liu G (2019) An improved firework algorithm for hardware/software partitioning. Appl Intell 49(3):950–962

    Article  Google Scholar 

  41. Yu C, Li J, Tan Y (2014) Improve enhanced fireworks algorithm with differential mutation. In: 2014 IEEE international conference on systems man, and cybernetics (SMC), pp 264–269

  42. Zheng YJ, Xu XL, Ling HF, Chen SY (2015) A hybrid fireworks optimization method with differential evolution operators. Neurocomputing 148:75–82

    Article  Google Scholar 

  43. Guo J, Liu W, Liu M, Zheng S (2019) Hybrid fireworks algorithm with differential evolution operator. Int J Intell Inf Database Syst 12(1-2):47–64

    Google Scholar 

  44. Zhu X, Liu C, Guo Y (2015) Design of fuzzy classification system based on fireworks optimization and differential evolution algorithm. J Zhengzhou Univ (Eng Sci) 36(6):47–51

    Google Scholar 

  45. Ochoa P, Castillo O, Soria J (2020) Optimization of fuzzy controller design using a differential evolution algorithm with dynamic parameter adaptation based on Type-1 and Interval Type-2 fuzzy systems. Soft Comput 24(1):193–214

    Article  Google Scholar 

  46. Lien LC, Cheng MY (2012) A hybrid swarm intelligence based particle-bee algorithm for construction site layout optimization. Expert Syst Appl 39(10):9642–9650

    Article  Google Scholar 

  47. Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza C, Ochoa P (2019) Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms 12(1):17

    Article  MATH  Google Scholar 

  48. Aydin ME, Kwan R, Leung C, Maple C, Zhang J (2013) A hybrid swarm intelligence algorithm for multiuser scheduling in HSDPA. Appl Soft Comput J 13(5):2990–2996

    Article  Google Scholar 

  49. Chen CH, Su MT, Lin CJ, Lin CT (2014) A hybrid of bacterial foraging optimization and particle swarm optimization for evolutionary neural fuzzy classifier. Int J Fuzzy Syst 16(3):422–433

    Google Scholar 

  50. Castillo O, Valdez F, Soria J, Amador-Angulo L, Ochoa P, Peraza C (2019) Comparative study in fuzzy controller optimization using bee colony, differential evolution, and harmony search algorithms. Algorithms 12(1):9

    Article  MATH  Google Scholar 

  51. Grosan C, Abraham A, Han S, Gelbukh A (2005) Hybrid particle swarm–evolutionary algorithm for search and optimization. Adv Artif Intell 3789:623–632

    Google Scholar 

  52. Zuo L, Liu L, Wang H, Tan L (2018) A hybrid differential evolution algorithm and particle swarm optimization with alternative replication strategy. Lect Notes Comput Sci 10941:487– 497

    Article  Google Scholar 

  53. Zhang SH, Ning XM, Ding C, Zhang XS (2010) Determining modular organization of protein interaction networks by maximizing modularity density. BMC Syst Biol 4(2):S10–S21

    Article  Google Scholar 

  54. Mete M, Tang F, Xu X, Yuruk N (2008) A structural approach for finding functional modules from large biological networks. BMC Bioinform 9(9):S19

    Article  Google Scholar 

  55. Schlicker A, Albrecht M (2008) FunSimMat: a comprehensive functional similarity database. Nucleic Acids Res 36(suppl 1):D434–D439

    Google Scholar 

  56. Stroin R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Int J Glob Optim 11:341–369

    Article  MathSciNet  Google Scholar 

  57. Cherry JM, Adler C, Ball C, et al. (1998) SGD: saccharomyces genome database. Nucleic Acids Res 26(1):73–79

    Article  Google Scholar 

  58. Pu S, Wong J, Turner B, et al. (2009) Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res 37(3):825–831

    Article  Google Scholar 

  59. Kikugawa S, Nishikata K, Murakami K, et al. (2012) PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from H-Invitational protein-protein interactions integrative dataset. BMC Syst Biol 6(S2):S7

    Article  Google Scholar 

  60. Ruepp A, Waegele B, Lechner M, et al. (2010) CORUM: the comprehensive resource of mammalian protein complexes-2009. Nucleic Acids Res 38(1):D497–D501

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the NSFC Research Program (61672065, 61906010), Beijing Municipal Education Research Plan Project (KM202010005032), China Postdoctoral Science Foundation funded project (71007011201801), Beijing Postdoctoral Research Foundation (2017-ZZ-024), and Chaoyang Postdoctoral Research Foundation (2018ZZ-01-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuicui Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Xiao, H. & Yang, C. HFADE-FMD: a hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in protein-protein interaction networks. Appl Intell 51, 1118–1132 (2021). https://doi.org/10.1007/s10489-020-01791-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01791-4

Keywords

Navigation