Skip to main content
Log in

Robust semi-supervised support vector machines with Laplace kernel-induced correntropy loss functions

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The insufficiency and contamination of supervision information are the main factors affecting the performance of support vector machines (SVMs) in real-world applications. To address this issue, novel correntropy loss functions and Laplacian SVM (LapSVM) are utilized for robust semi-supervised classification. It is known that correntropy loss functions have been used in robust learning and achieved promising results. However, the potential for more diverse priors has not been extensively explored. In this paper, a correntropy loss function induced from Laplace kernel function, called LK-loss, is applied to LapSVM for the construction of robust semi-supervised classifier. Properties of LK-loss are demonstrated including robustness, symmetry, boundedness, Fisher consistency and asymptotic approximation behaviors. Moreover, the asymmetric version of LK-loss is introduced to further improve the performance. Concave-convex procedure (CCCP) technique is used to handle the non-convexity of Laplace kernel-induced correntropy loss functions iteratively. Experimental results show that in most cases, the proposed methods have better generalization performance than the comparing ones, which demonstrate the feasibility and effectiveness of the proposed semi-supervised classification framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vapnik V (1995) The nature of statistical learning theory. Wiley, New York

    Book  MATH  Google Scholar 

  2. Deng T, Ye D, Ma R, Fujita H, Xiong L (2020) Low-rank local tangent space embedding for subspace clustering. Inf Sci 508:1–21

    Article  MathSciNet  Google Scholar 

  3. Yang X, Jiang X, Tian C, Wang P, Zhou F, Fujita H (2020) Inverse projection group sparse representation for tumor classification: A low rank variation dictionary approach. Knowledge-Based Syst 196(21):105768

    Article  Google Scholar 

  4. Zhang Y, Yang Y, Li T, Fujita H (2019) A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE. Knowledge-Based Syst 163(1):776–786

    Article  Google Scholar 

  5. Bartlett P, Jordan M, McAuliffe J (1995) Convexity, classification, and risk bounds. J Am Stat Assoc 101(473):138–156

    Article  MathSciNet  MATH  Google Scholar 

  6. Huber PJ (1981) Robust estimation of a location parameter. Ann Math Statist 35(1):73–101

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang X, Shi L, Suykens JAK (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36(5):984–997

    Article  Google Scholar 

  8. Wang L, Jia H, Li J (2008) Training robust support vector machine with smooth Ramp loss in the primal space. Neurocomputing 71(13):3020–3025

    Article  Google Scholar 

  9. Zhong P (2012) Training robust support vector regression with smooth non-convex loss function. Optim Methods Softw 27(6):1039–1058

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang K, Zhong P (2014) Robust non-convex least squares loss function for regression with outliers. Knowledge-Based Syst 71:290–302

    Article  Google Scholar 

  11. Shen X, Niu L, Qi Z, Tian Y (2017) Support vector machine classifier with truncated pinball loss. Pattern Recognit 68:199–210

    Article  Google Scholar 

  12. Yang L, Dong H (2018) Support vector machine with truncated pinball loss and its application in pattern recognition. Chemometrics Intell Lab Syst 177:89–99

    Article  Google Scholar 

  13. Suykens JAK, Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 48(1):85–105

    Article  MATH  Google Scholar 

  14. Huang X, Shi L, Suykens JAK (2014) Asymmetric least squares support vector machine classifiers. Comput Statist Data Anal 70(2):395–405

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang X, Song Q, Cao A (2007) A weighted support vector machine for data classification. Int J Pattern Recognit Artif Intell 21(5):961–976

    Article  Google Scholar 

  16. Rousseeuw P, Leroy A (1987) Robust regression & outlier detection. J Am Stat Assoc 31 (2):260–261

    MATH  Google Scholar 

  17. Rekha A, Abdulla M, Asharaf S (2017) Lightly trained support vector data description for novelty detection. Expert Syst Appl 85:25–32

    Article  Google Scholar 

  18. Principe JC (2010) Information theoretic learning. Springer, New York

    Book  MATH  Google Scholar 

  19. Santamaria I, Pokharel P, Principe JC (2006) Generalized correlation function: Definition, properties, and application to blind equalization. IEEE Trans Signal Process 54(6):2187–2197

    Article  MATH  Google Scholar 

  20. Singh A, Principe JC (2010) A loss function for classification based on a robust similarity metric. In: Proceedings of international joint conference on neural networks IJCNN’10

  21. He R, Hu B, Zheng W, Kong X (2011) Robust principal component analysis based on maximum correntropy criterion. IEEE Trans Image Process 20(6):1485–1494

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen X, Yang J, Liang J, Ye Q (2012) Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 97(1):63–73

    Article  Google Scholar 

  23. Xing H, Wang X (2013) Training extreme learning machine via regularized correntropy criterion. Neural Comput Appl 23(7):1977–1986

    Article  Google Scholar 

  24. Hu T, Fan J, Wu Q, Zhou D (2013) Learning theory approach to minimum error entropy criterion. J Mach Learn Res 14(1):377–397

    MathSciNet  MATH  Google Scholar 

  25. Feng Y, Huang X, Shi L, Yang Y, Suykens JAK (2015) Learning with the maximum correntropy criterion induced losses for regression. J Mach Learn Res 16(1):993–1034

    MathSciNet  MATH  Google Scholar 

  26. Singh A, Pokharel R, Principe JC (2014) The C-loss function for pattern classification. Pattern Recognit 47(1):441–453

    Article  MATH  Google Scholar 

  27. Xu G, Hu B, Principe JC (2018) Robust C-loss kernel classifiers. IEEE Trans Neural Netw Learn Syst 29(3):510–522

    Article  MathSciNet  Google Scholar 

  28. Zhu X (2008) Semi-supervised learning literature survey. Comput Sci, University of Wisconsin-Madison

  29. Belkin M, Niyogi P (2004) Semi-supervised learning on Riemannian manifolds. Mach Learn 56(1-3):209–239

    Article  MATH  Google Scholar 

  30. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(1):2399–2434

    MathSciNet  MATH  Google Scholar 

  31. Bradley PS, Mangasarian OL (1998) Feature selection via concave minimization and support vector machines. In: Proceedings of international conference on machine learning ICML’98

  32. Thi HAL, Dinh TP, Thiao M (2016) Efficient approaches for 2-0 regularization and applications to feature selection in SVM. Appl Intell 45:549–565

    Article  Google Scholar 

  33. He R, Zheng W, Tan T, Sun Z (2014) Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans Pattern Anal Mach Intell 36(2):261–275

    Article  Google Scholar 

  34. Gomez-Chova L, Camps-Valls G, Munoz-Mari J, Calpe J (2008) Semisupervised image classification with Laplacian support vector machines. IEEE Geosci Remote Sens Lett 5(3):336–340

    Article  Google Scholar 

  35. Munoz-Mari J, Bovolo F, Gomez-Chova L, Bruzzone L, Camps-Valls G (2010) Semi-supervised one-class support vector machines for classification of remote sensing data. IEEE Trans Geosci Remote Sens 48(8):3188–3197

    Article  Google Scholar 

  36. Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35(11):46–53

    Article  MATH  Google Scholar 

  37. Yang Z, Xu Y (2016) Laplacian twin parametric-margin support vector machine for semi-supervised classification. Neurocomputing 171:325–334

    Article  Google Scholar 

  38. Yang L, Ren Z, Wang Y, Dong H (2017) A robust regression framework with Laplace kernel-induced loss. Neural Comput 29(11):3014–3039. 16(1):1063–1101

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15(4):915–936

    Article  MATH  Google Scholar 

  40. Thi HAL, Dinh TP (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world non-convex optimization problems. Ann Oper Res 133:23–46

    Article  MathSciNet  MATH  Google Scholar 

  41. Fung G, Mangasarian OL (2001) Semi-supervised support vector machines for unlabeled data classification. Optim Method Softw 15:29–44

    Article  MATH  Google Scholar 

  42. Neumann J, Schnörr C, Steidl G (2005) Combined SVM-based feature selection and classification. Mach Learn 61:129–150

    Article  MATH  Google Scholar 

  43. Liu W, Pokharel PP, Principe JC (2007) Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans Signal Process 55(11):5286–5298

    Article  MathSciNet  MATH  Google Scholar 

  44. Lin Y (2004) A note on margin-based loss functions in classification. Stat Probab Lett 68(1):73–82

    Article  MathSciNet  MATH  Google Scholar 

  45. Steinwart I, Hush D, Scovel C (2011) Training SVMs without offset. J Mach Learn Res 12 (1):141–202

    MathSciNet  MATH  Google Scholar 

  46. Yang L, Dong H (2019) Robust support vector machine with generalized quantile loss for classification and regression. Appl Soft Comput 81:105483

    Article  Google Scholar 

  47. Sriperumbudur BK, Lanckriet GRG (2009) On convergence rate of concave–convex procedure. In: Proceedings of advances in neural information processing systems NIPS’09

  48. Yang L, Zhang S (2016) A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition. Eng Appl Artif Intell 53:176–189

    Article  Google Scholar 

  49. Dua D, Graff C (2019) UCI machine learning repository (http://archive.ics.uci.edu/ml)

  50. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Article  Google Scholar 

  51. Wu Y, Liu Y (2013) Adaptively weighted large margin classifiers. J Comput Graph Stat 22 (2):416–432

    Article  MathSciNet  Google Scholar 

  52. Xu G, Cao Z, Hu B, Principe JC (2017) Robust support vector machines based on the rescaled hinge loss function. Pattern Recognit 63:139–148

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (No. 11471010, 11271367). Moreover, the authors thank very the referees and the editor for their constructive comments. Their suggestions improved the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Yang, L. & Wang, X. Robust semi-supervised support vector machines with Laplace kernel-induced correntropy loss functions. Appl Intell 51, 819–833 (2021). https://doi.org/10.1007/s10489-020-01865-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01865-3

Keywords

Navigation