Skip to main content
Log in

IOSUDA: an unsupervised domain adaptation with input and output space alignment for joint optic disc and cup segmentation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The segmentation of the optic disc (OD) and the optic cup (OC) is an important step for glaucoma diagnosis. Conventional deep neural network models appear good performance, but degradation when facing domain shift. In this paper, we propose a novel unsupervised domain adaptation framework, called Input and Output Space Unsupervised Domain Adaptation (IOSUDA), to reduce the performance degradation in joint OD and OC segmentation. Our framework achieves both the input and output space alignments. Precisely, we extract the shared content features and the style features of each domain through image translation. The shared content features are input to the segmentation network, then we conduct adversarial learning to promote the similarity of segmentation maps from different domains. Results of the comparative experiments on three different fundus image datasets show that our IOSUDA outperforms the other tested methods in unsupervised domain adaptation. The code of the proposed model is available at https://github.com/EdisonCCL/IOSUDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aquino A, Gegúndez-Arias ME, Marín D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29 (11):1860–1869

    Article  Google Scholar 

  2. Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proc. Int. Conf. CVPR, pp 3722– 3731

  3. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D (2016) Domain separation networks. In: Proc. Adv. NeurIPS, pp 343–351

  4. Chen C, Dou Q, Chen H, Heng PA (2018) Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest x-ray segmentation. In: Int. Workshop Mach. Learn. Med. Imaging, pp 143–151. Springer

  5. Chen C, Dou Q, Chen H, Qin J, Heng PA (2020) Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation

  6. Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan NM, Tao D, Cheng CY, Aung T, Wong TY (2013) Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6):1019–1032

    Article  Google Scholar 

  7. Dou Q, Ouyang C, Chen C, Chen H, Heng PA (2018) Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. In: Proc. IJCAI, pp 691–697. AAAI Press

  8. French G, Mackiewicz M, Fisher M (2018) Self-ensembling for visual domain adaptation. In: ICLR, 6

  9. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7):1597–1605

    Article  Google Scholar 

  10. Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans. Med. Imaging 37(11): 2493–2501

    Article  Google Scholar 

  11. Fumero F, Alayón S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) Rim-one: an open retinal image database for optic nerve evaluation. In: Proc. 24th Int. Symp. Comput.-Based Med. Syst., pp 1–6. IEEE

  12. Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros A, Darrell T (2018) Cycada: cycle-consistent adversarial domain adaptation. In: ICML, pp 1989–1998

  13. Hoffman J, Wang D, Yu F, Darrell T (2016) Fcns in the wild: pixel-level adversarial and constraint-based adaptation. arXiv:1612.02649

  14. Huang X, Belongie S (2017) Arbitrary style transfer in real-time with adaptive instance normalization. In: Proc. ICCV, pp 1501–1510

  15. Huang X, Liu MY, Belongie S, Kautz J (2018) Multimodal unsupervised image-to-image translation. In: Proc. ECCV, pp 172–189

  16. Huo Y, Xu Z, Moon H, Bao S, Assad A, Moyo TK, Savona MR, Abramson RG, Landman BA (2018) Synseg-net: synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imaging 38(4):1016–1025

    Article  Google Scholar 

  17. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: Proc. Int. Conf. CVPR, pp 1125–1134

  18. Javanmardi M, Tasdizen T (2018) Domain adaptation for biomedical image segmentation using adversarial training. In: Proc. IEEE 15th Int. Symp. Biomed. Imag. (ISBI), pp 554–558. IEEE

  19. Joshi GD, Sivaswamy J, Krishnadas S (2011) Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6):1192–1205

    Article  Google Scholar 

  20. Kamnitsas K, Baumgartner C, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Nori A, Criminisi A, Rueckert D, et al. (2017) Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Proc. Int. Conf. Inf. Process. in Med. Imaging, pp 597–609. Springer

  21. Lian Q, Lv F, Duan L, Gong B (2019) Constructing self-motivated pyramid curriculums for cross-domain semantic segmentation: a non-adversarial approach. In: Proc. ICCV, pp 6758–6767

  22. Liu P, Kong B, Li Z, Zhang S, Fang R (2019) Cfea: collaborative feature ensembling adaptation for domain adaptation in unsupervised optic disc and cup segmentation. In: Proc. MICCAI, pp 521–529. Springer

  23. Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: ICML, pp 97–105

  24. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans. Med. Imaging 23(2):256–264

    Article  Google Scholar 

  25. Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12):2126–2133

    Article  Google Scholar 

  26. Lupascu CA, Tegolo D, Di Rosa L (2008) Automated detection of optic disc location in retinal images. In: Proc. 21st IEEE Int. Symp. Comput.-Based Med. Syst., pp 17–22. IEEE

  27. Mary MCVS, Rajsingh EB, Naik GR (2016) Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access 4:4327–4354

    Article  Google Scholar 

  28. Oliveira H, Ferreira E, dos Santos JA (2019) Conditional domain adaptation gans for biomedical image segmentation. arXiv:1901.05553

  29. Orlando JI, Fu H, Breda JB, van Keer K, Bathula DR, Diaz-Pinto A, Fang R, Heng PA, Kim J, Lee J, et al. (2020) Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal 59:101570

    Article  Google Scholar 

  30. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proc. MICCAI, pp 234–241. Springer

  31. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: Proc. Int. Conf. CVPR, pp 4510–4520

  32. Sevastopolsky A (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recognit Image Anal 27(3):618–624

    Article  Google Scholar 

  33. Shankaranarayana SM, Ram K, Mitra K, Sivaprakasam M (2017) Joint optic disc and cup segmentation using fully convolutional and adversarial networks. In: Fetal, Infant Ophthalmic Med. Image Anal., pp 168–176. Springer

  34. Singh VK, Abdel-Nasser M, Rashwan HA, Akram F, Pandey N, Lalande A, Presles B, Romani S, Puig D (2019) Fca-net: adversarial learning for skin lesion segmentation based on multi-scale features and factorized channel attention. IEEE Access 7:130552–130565

    Article  Google Scholar 

  35. Singh VK, Rashwan HA, Akram F, Pandey N, Sarker MMK, Saleh A, Abdulwahab S, Maaroof N, Torrents-Barrena J, Romani S, et al. (2018) Retinal optic disc segmentation using conditional generative adversarial network. In: Proc. CCIA, pp 373–380

  36. Song L, Wang C, Zhang L, Du B, Zhang Q, Huang C, Wang X (2020) Unsupervised domain adaptive re-identification: theory and practice. Pattern Recognit 102: 107173

  37. Tjandrasa H, Wijayanti A, Suciati N (2012) Optic nerve head segmentation using hough transform and active contours. Telkomnika 10(3):531

    Article  Google Scholar 

  38. Tsai YH, Hung WC, Schulter S, Sohn K, Yang MH, Chandraker M (2018) Learning to adapt structured output space for semantic segmentation. In: Proc. Int. Conf. CVPR, pp 7472–7481

  39. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: Proc. Int. Conf. CVPR, p 7167–7176

  40. Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: maximizing for domain invariance. arXiv:1412.3474

  41. Ulyanov D, Vedaldi A, Lempitsky V (2017) Improved texture networks: maximizing quality and diversity in feed-forward stylization and texture synthesis. In: Proc. Int. Conf. CVPR, pp 6924–6932

  42. Walter T, Klein JC (2001) Segmentation of color fundus images of the human retina: detection of the optic disc and the vascular tree using morphological techniques. In: Int. Symp. on Med. Data Anal., pp 282–287. Springer

  43. Wang G, Wang Z, Chen Y, Zhao W (2015) Robust point matching method for multimodal retinal image registration. Biomed Signal Process Control 19:68–76

    Article  Google Scholar 

  44. Wang G, Wang Z, Chen Y, Zhou Q, Zhao W (2016) Removing mismatches for retinal image registration via multi-attribute-driven regularized mixture model. Inf Sci 372:492–504

    Article  Google Scholar 

  45. Wang S, Yu L, Li K, Yang X, Fu CW, Heng PA (2019) Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Proc. MICCAI, pp 102–110. Springer

  46. Wang S, Yu L, Yang X, Fu CW, Heng PA (2019) Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11):2485–2495

    Article  Google Scholar 

  47. Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40(2):124–137

    Article  Google Scholar 

  48. Xu Y, Duan L, Lin S, Chen X, Wong DWK, Wong TY, Liu J (2014) Optic cup segmentation for glaucoma detection using low-rank superpixel representation. In: Proc. MICCAI, pp 788–795. Springer

  49. Xue Y, Xu T, Huang X (2018) Adversarial learning with multi-scale loss for skin lesion segmentation. In: Proc. IEEE 15th int. Symp. Biomed. Imag. (ISBI), pp 859–863. IEEE

  50. Youssif AAHAR, Ghalwash AZ, Ghoneim AASAR (2007) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1):11–18

    Article  Google Scholar 

  51. Zhang J, Li W, Ogunbona P, Xu D (2019) Recent advances in transfer learning for cross-dataset visual recognition: a problem-oriented perspective. ACM Computing Surveys (CSUR) 52(1):1–38

    Google Scholar 

  52. Zhang W, Ouyang W, Li W, Xu D (2018) Collaborative and adversarial network for unsupervised domain adaptation. In: Proc. Int. Conf. CVPR, pp 3801–3809

  53. Zhang Y, David P, Foroosh H, Gong B (2019) A curriculum domain adaptation approach to the semantic segmentation of urban scenes

  54. Zhang Y, Miao S, Mansi T, Liao R (2018) Task driven generative modeling for unsupervised domain adaptation: application to x-ray image segmentation. In: Proc. MICCAI, pp 599–607. Springer

  55. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. ICCV, pp 2223–2232

  56. Zilly JG, Buhmann JM, Mahapatra D (2015) Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images. In: Int. Workshop Mach. Learn. Med. Imaging, pp 136–143. Springer

  57. Zou Y, Yu Z, Vijaya Kumar B, Wang J (2018) Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proc. ECCV, pp 289–305

Download references

Acknowledgments

This paper was supported by the National Natural Science Foundation of China under Grant No. 61703260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, G. IOSUDA: an unsupervised domain adaptation with input and output space alignment for joint optic disc and cup segmentation. Appl Intell 51, 3880–3898 (2021). https://doi.org/10.1007/s10489-020-01956-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01956-1

Keywords

Navigation