Skip to main content
Log in

Adaptively weighted decomposition based multi-objective evolutionary algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Multi-objective evolutionary algorithm based on Decomposition (MOEA/D) decomposes a multi-objective problem into a number of scalar optimization problems using uniformly distributed weight vectors. However, uniformly distributed weight vectors do not guarantee uniformity of solutions on approximated Pareto-Front. This study proposes an adaptive strategy to modify these scalarizing weights after regular intervals by assessing the crowdedness of solutions using crowding distance operator. Experiments carried out over several benchmark problems with complex Pareto-Fronts show that such a strategy helps in improving the convergence and diversity of solutions on approximated Pareto-Front. Proposed algorithm also shows better performance when compared with other state-of-the-art multi-objective algorithms over most of the benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abido M (2003) Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans Power Syst 18(4):1529–1537

    Article  Google Scholar 

  2. Abido MA (2006) Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans Evol Comput 10(3):315–329

    Article  Google Scholar 

  3. Al Moubayed N, Petrovski A, McCall J (2010) A novel smart multi-objective particle swarm optimisation using decomposition. Parallel Problem Solving from Nature, PPSN XI, pp 1–10

  4. Arias-Montano A, Coello CAC, Mezura-Montes E (2012) Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans Evol Comput 16(5):662–694

    Article  Google Scholar 

  5. Bosman PA, Thierens D (2003) The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188

    Article  Google Scholar 

  6. Bringmann K, Friedrich T (2010) An efficient algorithm for computing hypervolume contributions. Evol Comput 18(3):383–402

    Article  Google Scholar 

  7. Coello CAC, et al. (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):129–156

    Google Scholar 

  8. Corne DW, Jerram NR, Knowles JD, Oates MJ et al (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO’2001. Citeseer)

  9. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  10. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  11. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, vol 1. IEEE, pp 825–830

  12. de Farias LR, Braga PH, Bassani HF, Araújo AF (2018) Moea/d with uniformly randomly adaptive weights. In: Proceedings of the genetic and evolutionary computation conference, pp 641–648

  13. Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans Syst Man Cybern-Part A: Syst Hum 34(3):315–326

    Article  Google Scholar 

  14. Giagkiozis I, Purshouse RC, Fleming PJ (2014) Generalized decomposition and cross entropy methods for many-objective optimization. Inf Sci 282:363–387

    Article  MathSciNet  Google Scholar 

  15. Gu FQ, Liu HL (2010) A novel weight design in multi-objective evolutionary algorithm. In: 2010 International conference on computational intelligence and security (CIS). IEEE, pp 137–141

  16. He Z, Yen GG, Zhang J (2014) Fuzzy-based pareto optimality for many-objective evolutionary algorithms. IEEE Trans Evol Comput 18(2):269–285

    Article  Google Scholar 

  17. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

    Article  Google Scholar 

  18. Ishibuchi H, Akedo N, Nojima Y (2013) A study on the specification of a scalarizing function in MOEA/D for many-objective knapsack problems. In: International conference on learning and intelligent optimization. Springer, pp 231–246

  19. Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2010) Simultaneous use of different scalarizing functions in MOEA/D. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation. ACM, pp 519–526

  20. Ishibuchi H, Setoguchi Y, Masuda H, Nojima Y (2016) Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE Trans Evol Comput 21(2):169–190

    Article  Google Scholar 

  21. Jiang Q, Wang L, Hei X, Yu G, Lin Y, Lu X (2016) MOEA/D-ARA+ SBX: a new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover. Knowl-Based Syst 107:197–218

  22. Jiang S, Feng L, Yang D, Heng CK, Ong YS, Zhang AN, Tan PS, Cai Z (2016) Towards adaptive weight vectors for multiobjective evolutionary algorithm based on decomposition. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 500–507

  23. Jiang S, Yang S (2016) An improved multiobjective optimization evolutionary algorithm based on decomposition for complex pareto fronts. IEEE Trans Cybern 46(2):421–437

    Article  Google Scholar 

  24. Ke L, Zhang Q, Battiti R (2013) MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans Cybern 43(6):1845–1859

    Article  Google Scholar 

  25. Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99, vol 1. IEEE

  26. Knowles J, Corne D (2002) On metrics for comparing nondominated sets. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, vol 1. IEEE, pp 711–716

  27. Konstantinidis A, Yang K (2011) Multi-objective energy-efficient dense deployment in Wireless Sensor Networks using a hybrid problem-specific MOEA/D. Appl Soft Comput 11 (6):4117– 4134

    Article  Google Scholar 

  28. Kukkonen S, Lampinen J (2007) Ranking-dominance and many-objective optimization. In: 2007 IEEE congress on evolutionary computation. IEEE, pp 3983–3990

  29. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  30. Li H, Landa-Silva D (2011) An adaptive evolutionary multi-objective approach based on simulated annealing. Evol Comput 19(4):561–595

    Article  Google Scholar 

  31. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  32. Lin S, Lin F, Chen H, Zeng W (2016) A MOEA/D-based multi-objective optimization algorithm for remote medical neurocomputing

  33. Lin Y, Liu H, Jiang Q (2018) Dynamic reference vectors and biased crossover use for inverse model based evolutionary multi-objective optimization with irregular pareto fronts. Appl Intell 48(9):3116–3142

    Article  Google Scholar 

  34. Liu HL, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455

    Article  Google Scholar 

  35. Ma X, Yu Y, Li X, Qi Y, Zhu Z (2020) A survey of weight vector adjustment methods for decomposition based multi-objective evolutionary algorithms. IEEE Transa Evol Comput

  36. Meghwani SS, Thakur M (2017) Multi-criteria algorithms for portfolio optimization under practical constraints. Swarm Evol Comput 37:104–125

    Article  Google Scholar 

  37. Meghwani SS, Thakur M (2018) Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with transaction cost. Appl Soft Comput 67:865–894

    Article  Google Scholar 

  38. Miettinen K (2012) Nonlinear multiobjective optimization, vol 12. Springer, Berlin

    Google Scholar 

  39. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22(2):231–264

    Article  Google Scholar 

  40. Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Resour 51:438–456

    Article  Google Scholar 

  41. Saborido R, Ruiz AB, Luque M (2016) Global WASF-GA: an evolutionary algorithm in multiobjective optimization to approximate the whole Pareto optimal front. Evolutionary computation

  42. Sato H (2014) Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation. ACM, pp 645–652

  43. Shim VA, Tan KC, Tan KK (2012) A hybrid estimation of distribution algorithm for solving the multi-objective multiple traveling salesman problem. In: 2012 IEEE congress on evolutionary computation. IEEE, pp 1–8

  44. Siwei J, Zhihua C, Jie Z, Yew-Soon O (2011) Multiobjective optimization by decomposition with pareto-adaptive weight vectors. In: 2011 Seventh international conference on natural computation, vol 3. IEEE, pp 1260–1264

  45. Stewart TJ, Janssen R, van Herwijnen M (2004) A genetic algorithm approach to multiobjective land use planning. Comput Oper Res 31(14):2293–2313

    Article  MathSciNet  Google Scholar 

  46. Wang L, Zhang Q, Zhou A, Gong M, Jiao L (2016) Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20(3):475–480

    Article  Google Scholar 

  47. Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2016) Adaptive replacement strategies for MOEA/D. IEEE Trans Cybern 46(2):474–486

    Article  Google Scholar 

  48. While L, Bradstreet L, Barone L (2012) A fast way of calculating exact hypervolumes. IEEE Trans Evol Comput 16(1):86–95

    Article  Google Scholar 

  49. Zapotecas Martínez S, Coello Coello CA (2011) A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th annual conference on genetic and evolutionary computation. ACM, pp 69–76

  50. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  51. Zhang Q, Li H, Maringer D, Tsang E (2010) MOEA/D with NBI-style Tchebycheff approach for portfolio management. In: IEEE congress on evolutionary computation. IEEE, pp 1–8

  52. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition

  53. Zhao F, Chen Z, Wang J, Zhang C (2016) An improved MOEA/D for multi-objective job shop scheduling problem. Int J Comput Integr Manuf 30(6):616–640

    Article  Google Scholar 

  54. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49

    Article  Google Scholar 

  55. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International conference on parallel problem solving from nature. Springer, pp 832–842

  56. Zitzler E, Laumanns M, Thiele L, et al. (2001) SPEA2: improving the strength Pareto evolutionary algorithm. In: Eurogen, vol 3242–103, pp 95–100

  57. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  58. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank anonymous reviewers and the editor-in-chief for their insightful comments and timely feedback.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj S. Meghwani.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors’ contributions

All the authors listed on the title page have contributed significantly to this work, have read the manuscript and attest to the validity and legitimacy of the data and its interpretation. Authors also agree that author list is correct in its content and order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meghwani, S.S., Thakur, M. Adaptively weighted decomposition based multi-objective evolutionary algorithm. Appl Intell 51, 3801–3823 (2021). https://doi.org/10.1007/s10489-020-01969-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01969-w

Keywords

Navigation