Skip to main content
Log in

Non-spike timing-dependent plasticity learning mechanism for memristive neural networks

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Memristive neural networks (MNNs) attract the attention of many researchers because memristor can mimic the learning mechanism of biologic neuron, spike timing-dependent plasticity (STDP). While STDP brings huge potentials on many applications for memristive neural networks, it also gives complex calculation process for hardware implement. In this work, a non-STDP learning mechanism is proposed, which is implemented in two common frameworks including feedforward neural network and crossbar. The non-STDP learning mechanism relies on the linear relationship between the value of memristor and area of input spikes, which gives the proposed method a simple calculation process and better hardware compatibility. Experimental results show that the non-STDP learning mechanism can help to achieve good hardware performance in both feedforward neural network and crossbar frameworks. Compared with STDP based memristive neural networks, the proposed method can save 2.19%-24.4% hardware resource (ALMs) and improve 1.56-12.25 MHz processing speed under a set of different network scales. In future, some other complex memristor models with non-STDP learning mechanism should be taken into consideration, which will give more room for practical applications of memristive neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Ann Rev Neurosci 16(1):73–93

    Article  Google Scholar 

  2. Ambrogio S, Balatti S, Nardi F, Facchinetti S, Ielmini D (2013) Spike-timing dependent plasticity in a transistor-selected resistive switching memory. Nanotechnology 24(38):384012

  3. Ankit A, Sengupta A, Panda P, Roy K (2017) Resparc: a reconfigurable and energy-efficient architecture with memristive crossbars for deep spiking neural networks. In: Proceedings of the 54th Annual Design Automation Conference 2017, pp 1–6

  4. Basu A, Acharya J, Karnik T, Liu H, Li H, Seo JS, Song C (2018) Low-power, adaptive neuromorphic systems: Recent progress and future directions. IEEE J Emerg Sel Top Circ Syst 8(1):6–27

    Article  Google Scholar 

  5. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circ Theory 18(5):507–519

    Article  Google Scholar 

  6. Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M, Spiga S (2016) Hfo2-based memristors for neuromorphic applications. In: 2016 IEEE International symposium on circuits and systems (ISCAS). IEEE, pp 393–396

  7. Duan S, Hu X, Dong Z, Wang L, Mazumder P (2014) Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans Neural Netw Learn Syst 26(6):1202–1213

    Article  MathSciNet  Google Scholar 

  8. Falez P (2019) Improving spiking neural networks trained with spike timing dependent plasticity for image recognition. Ph.D. thesis, Université de Lille

  9. Fan D, Sharad M, Roy K (2014) Design and synthesis of ultralow energy spin-memristor threshold logic. IEEE Trans Nanotechnol 13(3):574–583

    Article  Google Scholar 

  10. Gerstner W (2001) A framework for spiking neuron models: The spike response model. In: Handbook of biological physics, vol 4. Elsevier, pp 469–516

  11. Hao Y, Huang X, Dong M, Xu B (2020) A biologically plausible supervised learning method for spiking neural networks using the symmetric stdp rule. Neural Netw 121:387–395

    Article  Google Scholar 

  12. Hu M, Graves CE, Li C, Li Y, Ge N, Montgomery E, Davila N, Jiang H, Williams RS, Yang JJ, et al. (2018) Memristor-based analog computation and neural network classification with a dot product engine. Adv Mater 30(9):1705914

  13. Hu R, Tang Z, Song X, Luo J, Wu EQ, Chang S (2020) Ensemble echo network with deep architecture for time-series modeling. Neural Comput Appl:1–14

  14. Hu R, Zhou S, Liu Y, Tang Z (2019) Margin-based pareto ensemble pruning: An ensemble pruning algorithm that learns to search optimized ensembles. Computational Intelligence and Neuroscience

  15. Jo SH, Nazarian H (2015) Resistive random access memory with high selectivity and on/off ratio amplification sensing. In: 2015 IEEE 11Th international conference on ASIC (ASICON). IEEE, pp 1–3

  16. Kvatinsky S, Belousov D, Liman S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) Magic—memristor-aided logic. IEEE Trans Circ Syst II: Express Briefs 61(11):895–899

    Google Scholar 

  17. Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z et al (2018) Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat Commun 9(1):1–8

    Article  Google Scholar 

  18. Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M et al (2019) Long short-term memory networks in memristor crossbar arrays. Nat Mach Intell 1(1):49–57

    Article  Google Scholar 

  19. Lin Q, Wang J, Yang S, Yi G, Deng B, Wei X, Yu H (2017) The dynamical analysis of modified two-compartment neuron model and fpga implementation. Physica A: Stat Mech Appl 484:199–214

    Article  MathSciNet  Google Scholar 

  20. Moon J, Ma W, Shin JH, Cai F, Du C, Lee SH, Lu WD (2019) Temporal data classification and forecasting using a memri stor-based reservoir computing system. Nat Electron 2(10):480–487

    Article  Google Scholar 

  21. Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23(7):881–886

    Article  Google Scholar 

  22. Pham VT, Jafari S, Vaidyanathan S, Volos C, Wang X (2016) A novel memristive neural network with hidden attractors and its circuitry implementation. Sci China Technol Sci 59(3):358–363

    Article  Google Scholar 

  23. Pham VT, Volos C, Jafari S, Wang X, Vaidyanathan S et al (2014) Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron Adv Mater Rapid Commun 8(11-12):1157–1163

    Google Scholar 

  24. Phinyomark A, Phukpattaranont P, Limsakul C (2012) Feature reduction and selection for emg signal classification. Expert Syst Appl 39(8):7420–7431

    Article  Google Scholar 

  25. Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, Plank JS (2017) A survey of neuromorphic computing and neural networks in hardware. arXiv:1705.06963

  26. Shi Y, Nguyen L, Oh S, Liu X, Koushan F, Jameson JR, Kuzum D (2018) Neuroinspired unsupervised learning and pruning with subquantum cbram arrays. Nat Commun 9(1):1–11

    Article  Google Scholar 

  27. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80

    Article  Google Scholar 

  28. Tang Z, Chen Y, Ye S, Hu R, Wang H, He J, Huang Q, Chang S (2020) Fully memristive spiking-neuron learning framework and its applications on pattern recognition and edge detection. Neurocomputing 403:80–87

    Article  Google Scholar 

  29. Tang Z, Zhu R, Hu R, Chen Y, Wu EQ, Wang H, He J, Huang Q, Chang S (2020) A multilayer neural network merging image preprocessing and pattern recognition by integrating diffusion and drift memristors. IEEE Transactions on Cognitive and Developmental Systems

  30. Tang Z, Zhu R, Lin P, He J, Wang H, Huang Q, Chang S, Ma Q (2019) A hardware friendly unsupervised memristive neural network with weight sharing mechanism. Neurocomputing 332:193–202

    Article  Google Scholar 

  31. Wang J, Hu S, Zhan X, Yu Q, Liu Z, Chen TP, Yin Y, Hosaka S, Liu Y (2018) Handwritten-digit recognition by hybrid convolutional neural network based on hfo 2 memristive spiking-neuron. Sci Rep 8(1):1–7

    Google Scholar 

  32. Wang Z, Joshi S, Savel’ev SE, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan JP, Li Z et al (2017) Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater 16(1):101

    Article  Google Scholar 

  33. Wang Z, Li C, Lin P, Rao M, Nie Y, Song W, Qiu Q, Li Y, Yan P, Strachan JP et al (2019) In situ training of feed-forward and recurrent convolutional memristor networks. Nat Mach Intell 1(9):434–442

    Article  Google Scholar 

  34. Wang Z, Li C, Song W, Rao M, Belkin D, Li Y, Yan P, Jiang H, Lin P, Hu M et al (2019) Reinforcement learning with analogue memristor arrays. Nat Electron 2(3):115–124

    Article  Google Scholar 

  35. Wang Z, Rao M, Han JW, Zhang J, Lin P, Li Y, Li C, Song W, Asapu S, Midya R et al (2018) Capacitive neural network with neuro-transistors. Nat Commun 9(1):1–10

    Article  Google Scholar 

  36. Wang Z, Wang X, Lu Z, Wu W, Zeng Z (2020) The design of memristive circuit for affective multi-associative learning. IEEE Transactions on Biomedical Circuits and Systems

  37. Wang Z, Wu H, Burr GW, Hwang CS, Wang KL, Xia Q, Yang JJ (2020) Resistive switching materials for information processing. Nat Rev Mater:1–23

  38. Wang Z, Zeng T, Ren Y, Lin Y, Xu H, Zhao X, Liu Y, Ielmini D (2020) Toward a generalized bienenstock-cooper-munro rule for spatiotemporal learning via triplet-stdp in memristive devices. Nat Commun 11(1):1–10

    Article  Google Scholar 

  39. Wu A, Zeng Z (2015) Global mittag–leffler stabilization of fractional-order memristive neural networks. IEEE Trans Neural Netw Learn Syst 28(1):206–217

    Article  Google Scholar 

  40. Wu EQ, Deng PY, Qu XY, Tang Z, Zhang WM, Zhu LM, Ren H, Zhou GR, Sheng RS (2020) Detecting fatigue status of pilots based on deep learning network using eeg signals. IEEE Transactions on Cognitive and Developmental Systems

  41. Wu EQ, Hu D, Deng PY, Tang Z, Cao Y, Zhang WM, Zhu LM, Ren H (2020) Nonparametric bayesian prior inducing deep network for automatic detection of cognitive status. IEEE Transactions on Cybernetics

  42. Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB et al (2009) Memristor- cmos hybrid integrated circuits for reconfigurable logic. Nano Lett 9(10):3640–3645

    Article  Google Scholar 

  43. Xie X, Zou L, Wen S, Zeng Z, Huang T (2019) A flux-controlled logarithmic memristor model and emulator. Circ Syst Signal Process 38(4):1452–1465

    Article  Google Scholar 

  44. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol 8(1):13–24

    Article  Google Scholar 

  45. Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay NK, Fang Y et al (2020) An artificial spiking afferent nerve based on mott memristors for neurorobotics. Nat Commun 11(1):1–9

    Article  Google Scholar 

  46. Zhu R, Chang S, Wang H, Huang Q, He J, Yi F (2017) A versatile and accurate compact model of memristor with equivalent resistor topology. IEEE Electron Dev Lett 38(10):1367–1370

    Article  Google Scholar 

  47. Zhu R, Ye S, Tang Z, Lin P, Huang Q, Wang H, He J, Chang S (2019) Influence of compact memristors’ stability on machine learning. IEEE Access 7:47472–47478

    Article  Google Scholar 

  48. Zhu X, Li D, Liang X, Lu WD (2019) Ionic modulation and ionic coupling effects in mos 2 devices for neuromorphic computing. Nat Mater 18(2):141–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yanhua Chen, Zhihua Wang, Ruihan Hu, and Edmond Q. Wu. The first draft of the manuscript was written by Zhiri Tang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruihan Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Chen, Y., Wang, Z. et al. Non-spike timing-dependent plasticity learning mechanism for memristive neural networks. Appl Intell 51, 3684–3695 (2021). https://doi.org/10.1007/s10489-020-01985-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01985-w

Keywords

Navigation