Skip to main content
Log in

Moth-flame optimization algorithm based on diversity and mutation strategy

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this work, an improved moth-flame optimization algorithm is proposed to alleviate the problems of premature convergence and convergence to local minima. From the perspective of diversity, an inertia weight of diversity feedback control is introduced in the moth-flame optimization to balance the algorithm’s exploitation and global search abilities. Furthermore, a small probability mutation after the position update stage is added to improve the optimization performance. The performance of the proposed algorithm is extensively evaluated on a suite of CEC’2014 series benchmark functions and four constrained engineering optimization problems. The results of the proposed algorithm are compared with the ones of other improved algorithms presented in literatures. It is observed that the proposed method has a superior performance to improve the convergence ability of the algorithm. In addition, the proposed algorithm assists in escaping the local minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pelusi D, Mascella R, Tallini LG, Nayak J, Naik B, Deng Y (2020) An improved moth-flame optimization algorithm with hybrid search phase. Knowl Based Syst 191:105277

    Article  Google Scholar 

  2. Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2 (2):88–105

    Article  MathSciNet  MATH  Google Scholar 

  3. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  4. Khodabakhshian A, Hemmati R (2013) Multi-machine power system stabilizer design by using cultural algorithms. Int J Electr Power Energy Syst 44(1):571–580

    Article  Google Scholar 

  5. Kennedy J, Eberhart RC (2002) Particle swarm optimization. Proceedings of the 1995 IEEE International Conference on Neural Networks 4:1942–1948

    Google Scholar 

  6. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  7. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  8. Dorigo M, Maniezzo V, Colorni A, et al. (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Syst 26(1):29–41

    Article  Google Scholar 

  9. Yang X, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  10. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  11. Yang X (2010) Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-inspired Computation 2(2):78–84

    Article  Google Scholar 

  12. Rashedi E, Nezamabadipour H, Saryazdi S (2009) Gsa: A gravitational search algorithm. Inform Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  13. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110 (1):151–166

    Article  Google Scholar 

  14. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang C, Wang B, Cen Y, Xie N (2019) Ions motion optimization algorithm based on diversity optimal guidance and opposition-based learning. Control and Decision: 1–13

  16. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput and Applic 27(2):495–513

    Article  Google Scholar 

  17. Kaveh A, Dadras Eslamlou A (2020) Water strider algorithm: A new metaheuristic and applications. Structures 25:520–541

    Article  MATH  Google Scholar 

  18. Hayyolalam V, Kazem AAP (2019) Black widow optimization algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87:103249

    Article  Google Scholar 

  19. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  20. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: A novel optimization algorithm. Knowledge Based Systems 191

  21. Faris H, Alzoubi AM, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Information Fusion 48:67–83

    Article  Google Scholar 

  22. Faris H, Mafarja M, Heidari AA, Aljarah I, Alzoubi AM, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67

    Article  Google Scholar 

  23. Taradeh M, Mafarja M, Heidari AA, Faris H, Aljarah I, Mirjalili S, Fujita H (2019) An evolutionary gravitational search-based feature selection. Inform Sci 497:219–239

    Article  Google Scholar 

  24. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  25. Yíldíz BS, Yíldíz AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Materials Testing 59(5):425–429

    Article  Google Scholar 

  26. Allam D, Yousri D, Eteiba M (2016) Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Convers Manag 123:535–548

    Article  Google Scholar 

  27. Lei X, Fang M, Fujita H (2019) Moth-flame optimization-based algorithm with synthetic dynamic ppi networks for discovering protein complexes. Knowl Based Syst 172:76–85

    Article  Google Scholar 

  28. Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced moth-flame optimizer with mutation strategy for global optimization. Inform Sci 492:181–203

    Article  MathSciNet  Google Scholar 

  29. Chen H, Fu H, Cao Q, Han L, Yan L (2019) Feature selection of parallel binary moth-flame optimization algorithm based on spark. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, pp 408–412

  30. Wang P, Zhou Y, Luo Q, Fan C, Xiang Z (2019) A complex-valued encoding moth-flame optimization algorithm for global optimization. In: International Conference on Intelligent Computing. Springer, pp 719–728

  31. Emary E, Zawbaa HM (2016) Impact of chaos functions on modern swarm optimizers. PloS one 11(7):e0158738

    Article  Google Scholar 

  32. Xu L, Li Y, Li K, Beng GH, Jiang Z, Wang C, Liu N (2018) Enhanced moth-flame optimization based on cultural learning and Gaussian mutation. J Bionic Eng 15(4):751–763

    Article  Google Scholar 

  33. Huang L, Yang B, Zhang X, Yin L, Yu T, Fang Z (2019) Optimal power tracking of doubly fed induction generator-based wind turbine using swarm moth–flame optimizer. Trans Inst Meas Control 41(6):1491–1503

    Article  Google Scholar 

  34. Sapre S, Mini S (2019) Opposition-based moth flame optimization with cauchy mutation and evolutionary boundary constraint handling for global optimization. Soft Comput 23(15):6023–6041

    Article  Google Scholar 

  35. Hongwei LI, Liu J, Chen L, Bai J, Sun Y, Kai LU (2019) Chaos-enhanced moth-flame optimization algorithm for global optimization. J Syst Eng Electron 30(6):1144–1159

    Article  Google Scholar 

  36. Zhang H, Li R, Cai ZN, Gu Z, Chen M (2020) Advanced orthogonal moth flame optimization with broyden-fletcher-goldfarb-shanno algorithm: Framework and real-world problems. Expert Syst Appl 159:113617

    Article  Google Scholar 

  37. Li C, Niu Z, Song Z, Li B, Fan J, Liu PX (2018) A double evolutionary learning moth-flame optimization for real-parameter global optimization problems. IEEE Access 6:76700–76727

    Article  Google Scholar 

  38. Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 23(5):1699–1722

    Article  Google Scholar 

  39. Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer-the arpso, Dept. of Computer Science, University of Aarhus, Denmark 2 (2002)

  40. Wang Y (2013) An improved ant colony algorithm based on the search for diversity. Computer Digital Engineering 41(6):896–898

    Google Scholar 

  41. Yang M, Li C, Cai Z, Guan J (2014) Differential evolution with auto-enhanced population diversity. IEEE Trans Cybern 45(2):302–315

    Article  Google Scholar 

  42. Fang W, Sun J, Xu W (2008) Diversity-controlled particle swarm optimization algorithm. Control and Decision 23(8):863–868

    MATH  Google Scholar 

  43. Liang J, Qu B, Suganthan P Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory

  44. Mirjalili S (2016) Sca: A sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  45. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part i: Theory. Int J Numer Methods Eng 21(9):1583–1599

    Article  MATH  Google Scholar 

  46. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  47. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    Article  MathSciNet  MATH  Google Scholar 

  48. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  49. Li L, Huang Z, Liu F, Wu Q (2007) A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 85(7-8):340–349

    Article  Google Scholar 

  50. Kannan B, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. Mechanical Design 116(2):405–411

    Article  Google Scholar 

  51. Deb K (1997) Geneas: A robust optimal design technique for mechanical component design. In: Evolutionary algorithms in engineering applications. Springer, pp 497–514

  52. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27(1):155–182

    Article  MATH  Google Scholar 

  53. Gandomi AH, Yang X. -S., Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  54. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  55. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: A novel meta-heuristic method. Computers & Struct 139:18–27

    Article  Google Scholar 

  56. Chickermane H, Gea H (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39(5):829–846

    Article  MathSciNet  MATH  Google Scholar 

  57. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  58. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  59. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.11705002), and the Scientific Research Foundation of Education Department of Anhui Province,China(Grant No.KJ2019A0091, Grant No.KJ2019ZD09), the Humanities and Social Science Fund of Ministry of Education of China (Grant NO.19YJAZ H098). The authors would like to thank all the anonymous referees for their valuable comments and suggestions to further improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wang or Lu Wang.

Ethics declarations

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, C., Xie, Ng. et al. Moth-flame optimization algorithm based on diversity and mutation strategy. Appl Intell 51, 5836–5872 (2021). https://doi.org/10.1007/s10489-020-02081-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-02081-9

Keywords

Navigation